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Scarce resources are often shared between different stakeholders, and need to be scheduled fairly among

them. In this paper, we study the utility loss resulting from requiring the schedule to be fair, using the

price of fairness – the ratio of the utility attainable with and without fairness restrictions. We focus on

envy-freeness, an intuitive and well-studied fairness notion. We derive tight bounds on the price of fairness

as a function of the problem parameters – the number of agents, the time horizon, the discount factor, the

switching cost (the time it takes to transfer possession of the resource), and the concavity and heterogeneity

of the agents’ utility functions.

We analyze the effect of the different parameters on the utility loss to obtain actionable strategic insights.

At the macro level, the price of fairness is increasing in the number of agents, the switching cost, and the

heterogeneity of the utility functions, and it is decreasing in the time horizon and the degree of concavity.

At the micro level, however, the price of fairness is not monotone in any of these parameters, except the

heterogeneity. This implies that, counter-intuitively, a scheduler may be able to reduce the loss of utility by

increasing the number of agents or decreasing the time horizon. Furthermore, we find that the dependence

of the loss of utility on the number of agents obeys a threshold rule. These insights can help guide decision-

makers in scheduling problems where fairness is a factor.

1. Introduction

In many operational settings, a central planner needs to schedule a resource among different entities,

who use it to create value. The goal of the central planner is maximize the total value generated;

however different circumstances may dictate that the schedule meet some fairness requirement.

If the resource was procured jointly, the contributing entities would wish to guarantee that they
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each capture their fair share of the welfare; an organization may wish to generate fair schedules

to enhance employee satisfaction and retention (Bianchi et al. 2015); a government may wish to

schedule a scarce resource in a fair fashion among its states or districts. To make this problem

more concrete, consider the following examples.

• Scientific instruments. Some scientific instruments, such as particle colliders, quantum com-

puters, and telescopes, are extremely expensive and are constructed/procured jointly by multi-

ple parties. For example, the Large Binocular Telescope (LBT) is a joint international project

between multiple institutions. The demand for observation far exceeds the supply (Johnston

1990), and while the goal is to maximize the scientific benefit,1 the joint ownership constrains

the schedule planner to guarantee sufficient observation time to all stakeholders.

• Corporate car sharing. Having a smaller fleet of cars that are shared among employees is

an effective way for companies to reduce their fleet-related costs. It may be suboptimal to

schedule the fleet to maximize the total utility derived from the fleet, as a schedule that is

perceived as unfair would lead to employee dissatisfaction.

• Healthcare. Advanced medical equipment is usually scarce and needs to be scheduled among

different medical teams. For example, several surgeons often share a surgery room which

they jointly rent and for which they jointly procured the equipment. Because of the shared

ownership, the room needs to be scheduled fairly among the surgeons, even if one of them has

a higher success rate.

• Project scheduling. Skilled workers/machines are in short supply but need to be allocated

among multiple simultaneous projects. For example, a consultant has been jointly contracted

for several projects but can only work on one at a time; specialty construction equipment is

needed for several projects, but it is costly to transfer it between projects.

In all of the above situations, the fairness requirement comes at a cost, as it imposes additional

constraints, which can adversely affect the total achievable welfare. Several notions of fairness

are studied in the literature, including envy-freeness, proportionality, equitability, and max-min

fairness (see the discussion of related literature below). We focus on envy-freeness, a well studied

1 The scientific benefit is determined through a peer-evaluation process, see e.g., Shetrone et al. (2007).



Vardi and Haskell: Fair scheduling of a scarce resource
Operations Research 00(0), pp. 000–000, © 0000 INFORMS 3

fairness notion, which has been called the “gold standard” of fairness (Procaccia 2019); envy-free

allocations are fair in a very intuitive sense—each agent prefers their own allocation to any other’s.

In addition to being conceptually attractive, envy-freeness has the following advantages: (i) it is

invariant under heterogeneous scaling (i.e, if the utility function of one agent is scaled up or down

by a constant, an envy-free schedule remains envy-free). This makes it a more suitable measure of

fairness than equitability and max-min fairness when the utility functions are heterogeneous; (ii)

an envy-free schedule is guaranteed to exist in our setting, unlike a proportional one (we give an

example of a setting where a proportional schedule does not exist in Appendix C).

Although in some cases, envy (and unfairness in general) could potentially be reduced by using

monetary transfers, they are often either unethical or difficult, if not impossible, to implement;

similarly to (e.g., Bertsimas et al. 2012, Gur et al. 2021), we focus on settings without auxiliary

monetary transfers.

1.1. Our Contributions

We model a central planner who needs to schedule a scarce resource among several agents over

some time horizon. The resource can only be allocated to a single agent at any given time. Some

fixed amount of time is needed to transfer the resource between agents, during which the resource

remains idle; we refer to this idle time period as the switching cost. We note there is a switching

cost even if the resource is allocated to the same agent consecutively; e.g., a hospital room has to

be disinfected when switching patients, even if both patients are treated by the same physician.

The agents are endowed with heterogeneous utilities. Each utility is a function of the length

of time the resource is allocated to the agent. The agents experience temporal discounting from

obtaining the resource at later times. The agents’ utilities are therefore determined by the time

integral of an exponentially discounted instant utility. This aligns with the literature on dynamic

consumption based on Samuelson (1937) and Kahneman et al. (1997). We place a minimal require-

ment on the instant utility: we only require it to be non-increasing in the time the agent has held

the resource. As a result, our model applies to a variety of settings where the utility functions have
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diminishing returns, from scheduling medical equipment such as ventilators to a parent scheduling

a tablet among siblings on a flight. In particular, it captures many instant utility functions already

studied in the extant dynamic consumption literature (e.g., Baucells and Sarin 2007, Baucells and

Zhao 2020, Das Gupta et al. 2016). Furthermore, when there is no discounting this model recovers

the set of all increasing concave utility functions as the integrals of non-negative non-increasing

instant utility functions. Agents may be allocated the resource more than once, and their total

utility is additive over these allocations.

As an example, consider the problem of scheduling a particle collider among five teams over the

course of a month (28 days), where the switching time is two days (i.e., it takes two days between the

time the previous team leaves to the time it takes the new team to start their experiment and begin

obtaining their readings). As a research team spends more time with the collider, they experience

diminishing marginal returns due to data saturation, technical limitations, and human fatigue. This

makes their utility functions concave, as each additional unit of time yields progressively smaller

benefits in data collection and experimental precision. The teams have identical utility functions:

their utility as a function of time t is u(t) = t0.8, where t is the number of days. The teams could

prefer to get earlier time slots, as they would be able to publish sooner, but for simplicity, we ignore

this here (this corresponds to setting the discount factor to zero in our model).

To evaluate the utility loss from requiring the schedule to be envy-free, we use the price of

fairness (Bertsimas et al. 2011, Caragiannis et al. 2012): the ratio of the sum of the agents’ utilities

in an optimal utilitarian schedule and an optimal envy-free schedule (i.e., one that maximizes the

total utility subject to the fairness constraint). The optimal schedule in the above example would

be to allocate three of the five research teams 8 days each (and the other teams nothing), giving

each of the three teams a utility of ≈ 5.28 for a total utility of ≈ 15.83. The optimal envy-free

schedule would give each of the five research teams 4 days, giving each team a utility of ≈ 3.03

for a total of ≈ 15.16. The price of fairness is therefore approximately 1.044, which means that

there is less than a 5% loss of efficiency as a result of requiring the schedule to be envy-free. It
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is easy to verify that the price of fairness can be unbounded for arbitrary problem parameters:

in the above example, if the planning horizon was only 8 days long, the only envy-free schedule

does not allocate any time to any team, as the total switching time needs to be at least 8 days.

While the price of fairness can be unbounded in the worst-case, we take a parameterized approach,

deriving bounds on the price of fairness as a function of the number of agents, the duration of the

planning horizon, the switching cost, the discount factor, and the heterogeneity and concavity of

the agents’ utility functions. To quantify concavity, we introduce two new functionals, the cadence

and the discounted reciprocal function, and show that both align with natural interpretations of

concavity. The cadence aligns with the intuition that a smaller second derivative implies greater

concavity. The discounted reciprocal function aligns with the idea that if two concave functions f

and g intersect at the two end-points of an interval and f is above g over this interval, then f is

more concave than g on this interval.

We describe efficient algorithms for computing optimal and asymptotically optimal utilitarian

and envy-free schedules. For the utilitarian case, we show that when the time horizon T satisfies

a certain periodic structure, a schedule in which all intervals have the same duration is optimal.

Specifically, this duration is precisely the cadence of the utility of the agent with the highest “value

per time unit”. We then describe an algorithm for computing an envy-free schedule when the agents

are homogeneous, and show that this gives an optimal schedule when the time horizon is infinite.

Furthermore, we show that both of these algorithms are asymptotically optimal for all values of T .

We build upon these constructions to give three bounds on the price of fairness: an upper bound

for the most general setting, and tight bounds when the time horizon is infinite and when there

is no discounting. Our analysis shows that the problem parameters affect the price of fairness

differently on the macro and micro levels. The macro effects dominate when the planning horizon

is long, when the discount factor is large, or when the parameters change by orders of magnitude.

The micro effects, in contrast, predominate when there are small changes in the parameters, the

time horizon is short and the discount factor is small.
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At the macro level, the price of fairness decreases in the time horizon and the degree of concavity

of the agents’ utility functions, and increases in the number of agents, the switching cost and the

discount factor. At the micro level, however, we find that the price of fairness is not monotone in

most of these parameters. This observation is particularly useful from a managerial perspective,

as the central planner typically has control over some of the problem parameters. Consider again

the particle collider example with the utility function u(t) = t0.6. When there are n= 5 agents, the

price of fairness is approximately 1.039, but when n= 6, the price of fairness is 1, as the optimal

and envy-free allocations are the same.

Furthermore, we show that when there is no temporal discounting, problem instances exhibit

recurrent optimality in the time horizon and the switching cost, under mild conditions. That is,

if the price of fairness is not 1, it is possible to increase either the time horizon or the switching

cost to create a problem instance with a price of fairness of 1.2 Similarly, problem instances exhibit

asymptotic recurrent optimality in the number of agents: it is always possible to increase the number

of agents to make the price of fairness arbitrarily close to 1.

Finally, we show that when the agents are homogeneous and the number of agents is below some

threshold θ, then the price of fairness is bounded by a small constant; intuitively, the threshold

provides a cutoff on the number of agents that can be scheduled without sacrificing too much utility

for fairness. When the agents are homogeneous and the time horizon is infinite, this threshold gives

the maximal number of agents that the resource can support without sacrificing any utility for

fairness.

2. Related Literature

Several notions of fairness are considered in the literature on resource allocation problems. Other

than envy-freeness, some common notions are proportionality, equitability, and max-min fairness.

In order to facilitate the comparison of our results to the extant literature, we briefly define these

notions. An allocation is proportionally fair if each agent obtains a utility that is at least 1/n times

2 Note that despite decreasing the price of fairness, increasing the switching cost can only decrease the utility of both

the utilitarian and envy-free schedules.
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the utility they would derive from being allocated the entire resource, an equitable allocation is

one in which all agents obtain identical utilities, and a max-min fair allocation is one in which

we cannot increase the utility of any agent without reducing the utility of some agent with lower

utility.

2.1. The Price of Fairness

Bertsimas et al. (2011) and Caragiannis et al. (2012) independently introduced the price of fairness.

Caragiannis et al. (2012) analyzed the price of proportionality, envy-freeness, and equitability

in the context of dividing goods and chores; Bertsimas et al. (2011, 2012) studied fairness for

resource allocation problems characterized by the utility set – the set of achievable agent utilities

corresponding to all feasible resource allocations. Bertsimas et al. (2011) gave tight bounds on

the price of fairness for proportionality and max-min fairness, that only depend on the number of

agents n, under the assumption that the agents have equal maximum achievable utilities. Bertsimas

et al. (2012) considered α−fairness, which generalizes proportionality and max-min fairness, and

characterized the trade-off with respect to a fairness parameter α. Their bounds on the price of

fairness depend only on the number of agents and α, and they showed how to choose the value

of α to appropriately balance efficiency and fairness. In our paper, in contrast, we assume that

envy-freeness is a hard constraint, and instead of control over the fairness criterion, the planner

can manipulate some of the problem parameters to reduce the value loss resulting from the fairness

constraint.

The price of fairness has been studied in various operational settings. Iancu and Trichakis (2014)

studied multiportfolio optimization where the fund manager would like to optimize the net utility

of all accounts. Fairness considerations enter because the performance of each account depends

on all the others, and the manager wants to ensure a good return on all accounts. McCoy and

Lee (2014) studied maximizing the α−fairness for a health services resource allocation problem in

rural communities, subject to capacity constraints, and derived structural properties of the optimal

solution. Similarly to Bertsimas et al. (2012), they studied the loss of efficiency as a function of α.
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Bogomolnaia et al. (2021) considered the fair allocation of a single random object among several

agents, where the allocation is constrained to be proportionally fair ex-ante. They showed that

having access to the mean values of the utilities is sufficient to obtain a price of fairness that is

almost as good as when the manager has access to the full distribution. Recently, Breugem and

Van Wassenhove (2022) studied the price of fairness of vertical equity when it is imposed via

constraints that specify a minimum percentage of the total utility for each agent, and derive an

upper bound on the price of fairness.

Gur et al. (2021) studied the loss of utility as a result of provider guarantees in a centralized

planning system that allocates a set of jobs to service providers. They parameterized their problem

using the number of agents and the heterogeneity, and analyzed their impacts on the price of

fairness. We also explicitly model the heterogeneity of the agents’ utility functions; however, we

allow for more general heterogeneity than Gur et al. (2021), who restricted the heterogeneity to a

linear scaling coefficient. There are many other differences between our model and theirs: (i) they

allocated a set of discrete, indivisible jobs, while we allocate time (which is continuously divisible);

(ii) we only consider one type of constraint (envy-freeness), whereas they allowed more general

constraints; and (iii) they parameterized their problem using only two parameters. Despite these

differences, there are several shared insights: in the homogeneous case of Gur et al. (2021), the

relative utility loss does not exceed 1/2 for any number of agents. We obtain a similar bound when

the number of intervals in the optimal utilitarian schedule is at least the number of agents. In

contrast to Gur et al. (2021), however, the loss incurred due to the heterogeneity in our setting is

bounded by the number of agents, whereas in theirs, a large heterogeneity can lead to unbounded

losses even with a small number of agents.

2.2. Envy-Free Cake-Cutting

Our model is also related to the cake-cutting framework. In this framework, a resource (the cake)

is typically modeled as the interval [0,1]. Each agent has some non-negative integrable density

function over [0,1], and an agent’s utility for a sub-interval is given by the integral of its density

over this sub-interval. A “piece of cake” is a finite set of disjoint sub-intervals of [0,1], and an
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agent’s utility for a piece of cake is typically additive over the utilities of the sub-intervals. There

is a large body of work concerning envy-free cake cutting going back to the 1950s, with a focus

on the complexity of obtaining an envy-free allocation (e.g., Cohler et al. 2011, Deng et al. 2012).

In addition, there have been several papers on the price of envy-freeness of cake cutting (e.g.,

Caragiannis et al. 2012, Aumann and Dombb 2015).

When the time horizon is finite in our model, one can represent it as the interval [0,1]. However,

our model does not fit cleanly into the standard cake-cutting framework (even with a finite time

horizon) due to the switching cost and the discounting. In the standard cake-cutting model, it is

well known that there always exist proportional and envy-free allocations that are also Pareto-

efficient (e.g., Weller 1985). Similarly to the standard setting, we show that there always exists an

envy-free schedule. It is not difficult to verify that, as long as the time horizon is sufficiently long

so as to allow each agent to be allocated some interval, any such schedule can be modified to be

Pareto-efficient.

There is a related stream of literature that incorporates a temporal aspect into cake-cutting

and other resource allocation problems (e.g., Walsh 2011, Lien et al. 2014, Sinclair et al. 2022,

Manshadi et al. 2021). This body of work is conceptually different from our paper as the agents

arrive sequentially and their demands (utility functions) are revealed upon arrival, while in our

setting, the entire problem input is known upfront.

2.3. Fairness in Scheduling

Several works consider fairness in the context of scheduling, although they do not necessarily focus

on the price of fairness. Moulin (2007) considered the problem of scheduling jobs among multiple

agents who share a resource, with the goal of minimizing the slowdown (waiting time/job size). Qi

(2017) addressed fairness in the scheduling of heterogeneous agents with uncertain service times

(e.g., scheduling appointments with a physician). They introduced a type of min-max fairness and
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used it to schedule appointments. Breugem et al. (2021) studied fairness and attractiveness (a

different notion than fairness) in crew-rostering. They devised a fairness scheme for crew-rostering,

bounded its price of (max-min) fairness, and studied the trade-off between fairness and attractive-

ness.

Agnetis et al. (2019) and Zhang et al. (2020) consider the price of fairness in the single-machine

scheduling problem with two agents. In Agnetis et al. (2019), one agent minimizes its total comple-

tion time while the other minimizes its maximum tardiness. They provide tight bounds on the price

of fairness for both Kalai-Smorodinsky3 (KS) and proportional fairness. In Zhang et al. (2020),

both agents want to minimize their total completion time and one of them has exactly two jobs.

They show that the price of fairness in this case is 1/2.

2.4. Temporal Utilities

Intertemporal choice models are used in many decision theory, economics, and operations research

contexts to analyze how individuals make decisions involving trade-offs among costs and benefits

occurring at different times. They take into account the fact that people value present rewards

differently from future rewards, a concept known as time preference or discounting. The discounted

utility model was first proposed by Samuelson (1937), and despite facing some criticism for its

simplicity (e.g., Frederick et al. 2002), it is still the dominant model for intertemporal choice (e.g.,

Baucells and Sarin 2007, Bleichrodt et al. 2015). Kahneman et al. (1997) distinguished between

‘decision utility’ (the weight of an outcome) and ‘experienced utility’ (a hedonic quality), and

proposed a formal model for how individuals evaluate utility over time. The primitive ingredient

in this model is the ‘instant utility’, and the total utility is a time integral of the exponentially

discounted instant utility. Kahneman et al. (1997) assumed that the instant utility is independent

of the past. Their utility model is time-separable, so the same consumption leads to the same

level of satisfaction at any time, independently of past consumption. Other works argue that

present instant utility should depend on the history of consumption, and incorporate various forms

3 KS fairness is equivalent to max-min fairness where all utilities are normalized.
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of history-dependent instant utility. For instance, the instant utility in the models of Baucells

and Sarin (2007), Baucells and Zhao (2019, 2020) is diminishing in the length/intensity of past

consumption. Alternatively, the instant utility in Sundaresan (1989), Wathieu (1997), Das Gupta

et al. (2016) depends on consumption relative to a history-dependent reference level, e.g., as in

habit formation. Our model, where the instant utility is non-increasing in the length of time the

agent has held the resource, falls under the first category.

3. Model

We consider a resource scheduling problem where a planner needs to schedule an indivisible resource

among a set of n agents, over a (possibly infinite) planning horizon 0<T ≤∞. Let n be the number

of agents and [n] := {1, 2, . . . , n} be the set of agents. Let U = {u1, . . . , un} be the set of the agents’

utility functions, defined below, let τ > 0 be the switching cost, and let β ≥ 0 be the discount factor.

We denote a problem instance by P = (n,U , T, τ, β). For homogeneous utilities, we denote problem

instances by Pu = (n,u,T, τ, β), where all agents have utility function u.

3.1. Utilities

An interval I is a pair I = (s, d) where s ≥ 0 is the start time and d ≥ 0 is the duration of

I, respectively. Following Kahneman et al. (1997), we define, for each agent i, an instant utility

function υi : R≥0 → R≥0. Here, υi is a function of the amount of time the agent has been in

possession of the resource: if agent i gets the resource at time s, the instant utility from having the

resource at time x≥ s is υi(x− s). To account for the temporal value loss from beginning to use

the resource at a later time, we use exponential discounting (Samuelson 1937). Combining these

two models (duration-dependent instant utility and exponential discounting), we define agent i’s

total utility from being allocated the interval I = (s, d) to be:

ui(I) =

∫ s+d

s

e−β xυi(x− s)dx, (1)
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where the instant utility depends on how long the agent has held the resource. We assume that

all υi are non-increasing to reflect satiation from having the resource. This representation aligns

with many existing dynamic consumption models, and includes several parametric forms of instant

utility that have appeared in the literature: linear (υ(t) = 1− c t for c > 0 and t ∈ [0,1/c]) (e.g.,

Baucells and Zhao 2019, Das Gupta et al. 2016); power (υ(t) = tα−1 for α ∈ (0,1] and t≥ 0) (e.g.,

Baucells and Sarin 2007); and exponential (υ(t) = e−αt for t≥ 0) (e.g., Baucells and Sarin 2007).4

We overload the notation, and define ui(t) := ui((0, t)) =
∫ t

0
e−β xυi(x)dx. For I = (s, d), we there-

fore have ui(I) = e−β sui(d). We also have ui(0) = 0 by Eq. (1). Since each υi is non-increasing, agent

i’s utility ui is non-decreasing and concave as the integral of a non-negative and non-increasing

function. When β = 0, we require an additional technical assumption: that limt→∞ ui(t)/t= 0 (note

that this condition is automatically satisfied for β > 0 from the definition of ui).

An agent can be allocated multiple intervals, and their utility is additive over these intervals.

Further overloading the notation, we let ui(I) :=
∑

I∈I ui(I) be agent i’s utility for any set of

intervals I.

We define the heterogeneity of a set of utility functions U = {u1, . . . , un} to be the supremum of

the ratios of the valuations of any pair of utility functions over their domain (x≥ 0):

γ(U) = sup
ui,uj∈U,x≥0

ui(x)

uj(x)
,

where 0/0 := 1. If γ(U) = 1, the utilities are homogeneous (i.e., ui = uj for all i, j ∈ [n]).

3.2. Schedules

Let I = {I1, I2, . . . , Im} be a (possibly infinite) set of m≥ 1 intervals, where Ik = (sk, dk) for k ∈ [m].

We will always assume that the intervals are sorted with respect to their start times; that is, if k < `

then sk < s`. We say that I is feasible for P = (n,U , T, τ, β) if we have s1 ≥ 0, sk ≥ sk−1 + dk−1 + τ

for every k ∈ [2,m], and if T <∞ then sm + dm ≤ T . The set I is tight with respect to P if I is

feasible and all of the inequalities hold with equality. That is, s0 = 0, sk = sk−1 +dk−1 + τ for every

k ∈ [2,m], and if T <∞ then sm + dm = T .

4 The instant utilities in these works are obtained by first specifying a utility function (quadratic, power, or exponen-

tial) and then taking the instant utility to be its derivative.
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A schedule π = {π1, . . . , πn} for problem P is an ordered set denoting the interval assignments

of all agents, where πi is the set of intervals assigned to agent i in π. Let I(π) = ∪i∈[n]πi be the

set of all intervals assigned in π, sorted in increasing order of the interval start times. We say that

π is feasible for P = (n,U , T, τ, β) if I(π) is feasible for P. A schedule π is tight with respect to

P if I(π) is tight with respect to P. Note that we must have |I(π)|<∞ for T <∞ because the

switching cost τ is strictly positive. Let Π(P) denote the set of all feasible schedules for P.

For problem P = (n,U , T, τ, β), define the utility of agent i∈ [n] for schedule π ∈Π(P) to be:

ui(π,P) :=


ui(πi), if β > 0 or T <∞,

limT→∞

∑
k:Ik∈πi,sk+dk≤T

ui(Ik)

T
, if β = 0 and T =∞.

(2)

When β = 0 and T =∞, we take the average utility instead of the total utility to ensure that the

value is finite; this will allow us to compare the utility of two different schedules. We omit the

dependence on P and simply write ui(π) when it is clear from context.

3.3. The Price of Fairness

Given problem instance P, the unconstrained (utilitarian) scheduling problem is to maximize the

sum of the agents’ utilities:

PUC := sup
π∈Π(P )

∑
i∈[n]

ui(π).

For problem P, a schedule π ∈Π(P) is envy-free if ui(πi)≥ ui(πj) for all i, j ∈ [n]. In other words,

a schedule is envy-free if no agent prefers another agent’s allocation to their own. Let ΠEF (P)⊆

Π(P) denote the set of all envy-free schedules. The fairness-constrained scheduling problem is

PEF := sup
π∈ΠEF (P)

∑
i∈[n]

ui(π).

We denote the optimal values of PUC and PEF by OPT (PUC) and OPT (PEF ), respectively. The

price of fairness for problem P is the ratio of the optimal total utilities in the unconstrained and

fairness-constrained problems:

PoF(P) :=
OPT (PUC)

OPT (PEF )
.
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It is always true that PoF(P) ≥ 1, and a larger PoF indicates that a larger fraction of the total

utility is lost by constraining the schedule to be envy-free.

4. Measures of Concavity

The optimal utilitarian and envy-free schedules depend on the agents’ utility functions, and in

particular on the degree of concavity of these functions. There is no single accepted definition of

what it means for one function to be “more concave” (or more convex) than another. If for all x

in some subset of the intersection of the domains of two concave functions f and g it holds that

|f ′′(x)|> |g′′(x)|, then it is natural to say that f is more concave than g on this set. However, if

the inequality does not hold for all x in the set, it is not clear how to compare the two functions’

degree of concavity. To our knowledge, the only accepted metric is that of strong convexity5 (which

is straightforward to adapt to concavity), which allows one to compare strongly concave functions

in terms of their strong concavity parameter. However, this notion is unsuitable for our purposes,

as we do not require strong concavity.

We define two novel functionals to measure the degree of concavity of a function: the cadence and

the discounted reciprocal function. We show that these functionals align with natural interpretations

of concavity. The cadence will be used in the construction of optimal utilitarian and envy-free

schedules, and the discounted reciprocal function appears in the analysis of optimal envy-free

schedules. Additionally, both functionals appear in the bounds on the price of fairness.

4.1. Cadence

We define the cadence of a function as follows.

Definition 1. For any function f :R→R that is non-decreasing and strictly concave on R≥0 and

any τ > 0, define

Cadenceτ (f) := arg max
t>0

f(t)

t+ τ
. (3)

5 A differentiable function f is strongly convex with parameter m≥ 0 if f(y)≥ f(x) + f ′(x)(y− x) + (m/2)(y− x)2

for all x, y ∈R (see, e.g., Vial (1982)).
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(a) Cadenceτ of fa(t) = ta and f∗a (t) =(
t
a

+ 1
)a − 1 as a function of a, for τ = 1. The

plot shows that the cadence is inversely propor-

tional to concavity as measured by the second

derivative.

(b) Discounted reciprocal function of f(t) =

t0.25, h(t) = t, and g, which is a piecewise linear

function that intersects f at t= 0.2 with param-

eters β = 0.1, τ = 1. The functions f , g, and h

intersect at {0,1}, and f and g are more concave

than h on [0,1].

Figure 1 Plots showing how the cadence and discounted reciprocal function align with natural interpretations of

concavity.

In Appendix D.1, we show that the cadence is well-defined (i.e., the maximizer is finite, attained,

and unique) for strictly concave functions satisfying the growth condition limx→∞ u(t)/t = 0, for

any τ > 0; in Appendix D.2, we show how to modify the definition of the cadence for functions

that are not strictly concave.

The cadence conforms to the interpretation of the second derivative as a measure of con-

cavity. This is exemplified in Figure 1a, which depicts the functions fa(t) = ta and f∗a (t) =(
t
a

+ 1
)a−1. Both functions intuitively become more concave as a decreases, for a∈ (0,1], and both

Cadenceτ (fa) and Cadenceτ (f
∗
a ) are increasing in a in this range. Lemma 4 in Appendix D.3

formalizes this intuition.

In the following section, we will see that the cadence corresponds to the length of the intervals

in optimal utilitarian schedules. Intuitively, a function is “more concave” when its marginal utility

decreases quickly, hence for such functions we would want to switch the resource more frequently.
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We extend the above definition of the cadence in two ways to apply to discounted utility functions

(Definition 2) and finite time horizons (Definition 3). We show in Appendix D.4 that both of these

definitions indeed generalize the basic definition of cadence, by demonstrating that Cadenceτ is

a special case thereof. First, we extend the definition to account for exponential discounting.

Definition 2. Let f : R→ R be non-decreasing and strictly concave on R≥0. For any τ > 0 and

β > 0, let

Cadence(β,τ)(f) :=arg max
t>0

f(t)

1− e−β(t+τ)
.

Definition 2 requires that β > 0, but we would like the cadence to be well-defined for all β ≥

0; we therefore extend the definition of Cadence(β,τ) to β = 0 by setting Cadence(0,τ)(f) =

Cadenceτ (f). The next definition extends the notion of cadence to finite time horizons.

Definition 3. Let f : R→ R be non-decreasing and strictly concave on R≥0. For any τ > 0 and

T <∞, let

Bounded-Cadence(T,τ)(f) := arg max
t:(t+τ)|(T+τ)

f (t)

t+ τ
,

where (t+ τ) | (T + τ) means that (t+ τ) divides (T + τ).

We show in Appendix D.5 that all three notions of cadence can be computed efficiently for any

utility function of the form of Eq. (1).

4.2. The Discounted Reciprocal Function

The discounted reciprocal function is defined as follows.

Definition 4. For any continuous and non-decreasing function f : R≥0→R≥0, β > 0, and τ > 0,

let Φf,β,τ be the unique value of y such that f(y) = e−β(y+τ)f(t). We call Φf,β,τ the discounted

reciprocal of f with respect to β and τ .

In Appendix E.1, we show that the discounted reciprocal function is well-defined for all t≥ 0.
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Intuitively, the discounted reciprocal function measures the following. Given a utility function

u, we consider two subsequent intervals where the first has duration y and the second has duration

t. The utility from the first interval is u(y) (it is undiscounted since we get it now) and the utility

from the second is e−β(y+τ)u(t) (it is discounted since we get it starting at time y + τ). Given t,

Φu,β,τ (t) is the required duration y of the first interval so that u(y) = e−β(y+τ)u(t), i.e., so that

both intervals have the same utility. If one agent is allocated the first interval (of length y), and

another agent is allocated the second interval (of length t), then neither agent envies the other.

The discounted reciprocal function is used in the computation and analysis of the price of fairness,

and a variation of this function is used in the construction of the optimal envy-free schedule.

The discounted reciprocal function aligns with the following interpretation of concavity: if two

concave increasing functions f and g intersect at points a and b, and for every t∈ [a, b], f(t)> g(t),

then f is more concave than g on [a, b]. In Figure 1b, h is linear, f and g are more concave than h on

[0,1] by any (reasonable) notion of concavity. Indeed Φf,β,τ (t)≤Φh,β,τ (t) and Φg,β,τ (t)≤Φh,β,τ (t)

for all t ∈ [0,1]. We formalize this intuition in Appendix E.2. It is not clear how to compare the

degree of concavity of f and g, however; f is more concave than g over [0,0.2) and (0.2,1], but not

at t = 0.2. We see that neither discounted reciprocal function is greater than the other over the

entire interval.

The discounted reciprocal function can be applied recursively. Define Φ0
f,β,τ (t) = t and for all

p≥ 1, define the composition

Φp
f,β,τ (t) = Φf,β,τ

(
Φp−1
f,β,τ (t)

)
. (4)

We call p the composition number of Φf,β,τ .

5. Constructing Optimal and Asymptotically Optimal Schedules

In this section, we describe efficient algorithms to compute the following: (i) an optimal schedule

for the unconstrained problem; and (ii) an optimal envy-free schedule when the agents are homo-

geneous. In the former setting, we assume that the planning horizon T is a member of a countably

infinite set of real numbers, and show that this implies a construction of asymptotically optimal
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schedules for all values of T . For the latter setting, it is possible to obtain a similar result; however,

it is not clear how to succinctly describe the values of T for which the algorithm is optimal. We

therefore only prove exact optimality for T =∞. In addition, we prove asymptotic optimality for

general values of T . We remark upon the complexity of designing optimal envy-free schedules for

heterogeneous agents in Section 7.

5.1. Optimal and Asymptotically Optimal Schedules for the Unconstrained Problem

Our first result, Theorem 1, precisely characterizes an optimal unconstrained schedule when T is

a member of a countably infinite set, specifically when T = m(δi∗ + τ)− τ for integer m. Here,

δi∗ is the cadence of agent i∗’s utility functions, where i∗ is the agent with the highest “value

per unit time” (defined formally below). The theorem states that when T is as above, there is

an optimal schedule in which all intervals have the same duration: δi∗ . Therefore, computing an

optimal schedule can be reduced to computing the value of Cadence(β,τ) (ui) for each of the utility

functions ui ∈ U . In Appendix D.5, we show that Cadence(β,τ) (ui) can be computed efficiently.

Hence, the theorem yields an efficient algorithm for construction of an optimal schedule. When

T is not as above, we can compute an asymptotically optimal schedule (with respect to T ) as

follows: choose the largest integer m such that Tm :=m(δ+τ)−τ is not larger than T and compute

the optimal schedule for Tm. More precisely, given a problem P = (n,U , T, τ, β), the schedule for

Pm = (n,U , Tm, τ, β) is asymptotically optimal for P = (n,U , T, τ, β).

Theorem 1. Let P = (n,U , T, τ, β), n ∈ N≥1, τ > 0, β > 0, and for each i ∈ [n], denote δi =

Cadence(β,τ) (ui) and ρi = e−β(δi+τ). Set i∗ ∈ arg maxi∈[n]
ui(δi)

1−ρi
. Let Ik = (sk, δi∗) with sk = (k −

1)(δi∗ + τ) for all k such that sk + δi∗ ≤ T . Set π= {π1, . . . , πn}, where πi∗ = {Ik}k≥1 and πj = ∅ for

all j 6= i∗. For any m∈Z, denote Tm =m(δi∗ + τ)− τ .

• If T = Tm for some m∈Z, then π is an optimal schedule for PUC.

• Otherwise, for any ε > 0, there exists mε ∈Z>0 such that if T > Tmε then

∑
i∈[n]

u(π)≥ (1− ε)OPT
(
PUC

)
.

Proof. See Appendix F. �
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5.2. Optimal and Asymptotically Optimal Envy-Free Schedules for Homogeneous Agents

We now describe an algorithm that computes an envy-free schedule π for any instance P =

(n,u,T, τ, β); the pseudocode is given as Algorithm 1. When T =∞, π is an optimal EF sched-

ule, otherwise π is asymptotically optimal. Before describing the algorithm, we need to define the

following operation. Let π be a schedule for n agents. For any t ∈R≥0, define the operation push

right (.) as follows. For every interval Ik = (sk, dk) ∈ I(π), set I ′k = (sk + t, dk). For i ∈ [n], let

π′i = {I ′k : Ik ∈ πi}, and let π′ = {π′1, . . . , π′n}. Then π′ = π . t. Simply put, π′ is the schedule where

the durations of all of the intervals are identical to π, and the start times of all of the intervals are

increased by t.

Algorithm 1 works as follows. Compute δ=Cadence(β,τ)(u), and let I be a tight set of intervals

of length δ for P. That is, I = {I1, I2, . . .}, where Ik = (sk, δ) for all k≥ 0, s1 = 0, and sk = sk−1 +δ+τ

for all k≥ 2. Define ρ= e−β(δ+τ). The intervals I are greedily allocated among λ≤ n agents, where

λ = maxx∈[n]

{
x : ρ≥ x−1

x

}
.6 Intuitively, λ is the maximum number of agents for which such an

allocation results in them all having equal total utilities. The pseudocode for this greedy algorithm

is given in Appendix G. Then, the remaining agents are allocated intervals one at a time, as follows.

Assume that agents 1, . . . , i− 1 have already been allocated intervals. Allocate the interval (0, x)

to agent i, where x ≥ 0 satisfies u(x) = u(πj . (x+ τ)) for any j ∈ {1, . . . , i− 1},7 and push the

schedule for the remaining agents right by x+ τ . This procedure guarantees that agent i’s utility

is identical to that of agents 1, . . . , i− 1. Following the push right operations, the length of π is

possibly greater than T . In this case, π is truncated at T to obtain π′. This may cause agents to

have different utilities. Assume without loss of generality that agent n now has the lowest utility.

The utility of all agents 1, . . . , n− 1 is then decreased to un(π′) by shortening their intervals.

6 We slightly abuse notation in the pseudocode, using Greedy(P ′ = (λ,u,T, τ, β)) to denote assigning intervals

greedily to agents 1, . . . , λ.

7 Note that u(πj . (x+ τ)) is identical for all j ∈ {1, . . . , i− 1}.
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Algorithm 1: Push Right Algorithm

Input: P = (n,u,T, τ, β)

Output: An EF schedule π.

δ←Cadence(β,τ) (u)

ρ← e−β(δ+τ)

λ←maxx∈[n]

{
x : ρ≥ x−1

x

}
π← Greedy(P ′ = (λ,u,T, τ, β))

for i∈ [λ+ 1, n] do

di← y : u(y) = e−β(y+τ)ui−1(π)

πi = (0, di)

π←{πi}∪π . (di + τ)

end

Truncate π at T

umin←mini∈[n]{ui(π)}

for i∈ [n] do

Reduce the length of the intervals in πi so that ui(π) = umin

end

return π

Theorem 2. Let P = (n,u,T, τ, β), n∈N≥1, τ > 0, β > 0, δ=Cadence(β,τ) (u), and ρ= e−β(δ+τ).

Let π be the schedule generated by Algorithm 1. Then π is envy-free, and:

• If T =∞ then π is an optimal envy-free schedule for P.

• Otherwise, for any ε > 0, there exists Tε > 0 such that if T > Tε then

∑
i∈[n]

u(π)≥ (1− ε)OPT
(
PEF

)
.

Proof. See Appendix H. �
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6. Bounds on the Price of Fairness

In this section, we present a series of theorems and propositions that establish bounds on the price

of fairness under various settings and detail the dependence of these bounds on specific parameters.

The theorems provide bounds on the price of fairness, applicable across different scenarios, while

the propositions delve into more nuanced settings, highlighting how different parameters influence

these bounds.

We prove four bounds on the price of fairness. The first, Theorem 3, is our most general bound,

but it is, for the most part, not tight. This is because it is not clear how to compare the utility

of the optimal envy-free schedule to that of the optimal utilitarian schedule in the most general

setting. We therefore introduce several auxiliary scheduling problems as intermediaries that we can

compare, to obtain a chain of inequalities starting with the optimal envy-free schedule and ending

with the optimal utilitarian schedule. We lose a small factor in the bound in each inequality in

exchange for generality. The other three are tight bounds for more restricted settings: Theorem 4

gives a tight bound for problem settings with an infinite time horizon and a strictly positive discount

factor; Theorem 5 applies to finite horizon undiscounted settings with homogeneous utilities; and

Theorem 6 is for infinite horizon undiscounted settings.

Through the propositions, we analyze the role that various parameters play in the price of

fairness. These propositions are designed to complement the theorems by providing detailed insights

into how the bounds are affected by various parameters unique to each scenario, and are distributed

across the relevant subsections. We distinguish between macro and micro effects. Intuitively, macro

effects are the large-scale effects of changing the parameters. They dominate the micro effects when,

e.g., large parameter changes are made, when the time horizon is infinite, and when the discount

factor β is large. Micro effects are due to small variations in the parameters; they predominate

when the changes are small, the time horizon is finite, and β is small. For clarity, we focus on the

case where β = 0 to highlight the micro effects, although it is straightforward to see that most of

our insights still hold for sufficiently small β > 0.
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6.1. A General Bound

Theorem 3. Let P = (n,U , T, τ, β), n ∈ N≥1, τ > 0, β > 0, and for each i ∈ [n], denote δi =

Cadence(β,τ) (ui) and ρi = e−β(δi+τ). Set i∗ ∈ arg maxi∈[n]
ui(δi)

1−ρi
, and let ρ= ρi∗. Assume that T =

m(δi∗+ τ)− τ for some integer m>n such that ρn ≥ nρm, let λ∈N be the largest integer such that

ρ≥ λ−1
λ

, and let ψ= γ(U)

γ(U)+n−1
. Then if n> λ,

PoF(P)≤ λψ (1− ρm)

ρn−λ−λρm
, (5)

otherwise (if n≤ λ), PoF(P)≤ nψ(1−ρm)

1−nρm .

Proof. See Appendix I. �

Theorem 3 provides a bound on the price of fairness for problem instances with positive dis-

counting. We restrict the time horizon T to be such that T =m(δi∗+ τ)− τ where m is sufficiently

large (similarly to Theorem 1), as we can precisely compute the optimal unconstrained schedule in

this case. It is not difficult to adapt the bounds for arbitrary values of T , by extending the time

horizon of the optimal unconstrained schedule to some T ′ >T , where T ′ =m(δi∗ + τ)− τ for some

m, as above. The following corollary to Theorem 3 covers the infinite time horizon.

Corollary 1. Let P = (n,U ,∞, τ, β), n ∈N≥1, τ > 0, β > 0, and define ρ, λ, and ψ as in Theo-

rem 3. Then, if n> λ,

PoF(P)≤ λψ

ρn−λ
,

otherwise PoF(P)≤ nψ.

Proof. See Appendix J. �

As ρ= e−β(δi∗+τ), the bound of Corollary 1 suggests that the macro effects of τ and β on the price

of fairness are exponential in nature. The following result, Which uses the bound of Corollary 1

and gives a matching lower bound, shows that this is indeed the case.

Proposition 1. Fix n ∈ N≥2 and a utility function u. For β > 0 and τ > 0, let P(β,τ) =

(n,u,∞, τ, β). Then PoF(P(β,τ)) grows exponentially as a function of β and τ , i.e., PoF(P(β,τ)) =

eΘ(β+τ).
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(a) PoF as a function of n. (b) PoF of P as a function of τ .

(c) PoF of P as a function of β. (d) PoF of P = (n= 20, ux,∞, τ, β) as a function

of δx := Cadence(β,τ)(ux), where ux is such that

ux(t) = t
x

for 0≤ t≤ x and ux(t) = 1 for t > x.

Figure 2 PoF of P = (n,u,∞, τ, β) as a function of n and β, where u(t) = t0.1, τ = 1, n= 10, and β = 0.1 unless

noted otherwise.

Proof. See Appendix N.1. �

The exponential dependence of the price of fairness on β and τ described in Proposition 1 is

illustrated in Figures 2b and 2c. We present the micro effects of τ in Proposition 6 below (β does

not exhibit any micro effects). The macro effects of n are discussed in the next subsection, as the

proof will rely on Theorem 4.

6.2. A Tight Bound for the Infinite Horizon Problem

Theorem 4 gives tight bounds on the price of fairness for problems with an infinite time horizon.
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Theorem 4. Let P = (n,U ,∞, τ, β), n ∈ N≥1, τ > 0, β > 0, and for each i ∈ [n], denote δi =

Cadence(β,τ) (ui) and ρi = e−β(δi+τ). Set i∗ ∈ arg maxi∈[n]
ui(δi)

1−ρi
, and let ρ= ρi∗. Let λ ∈ N be the

largest integer such that ρ≥ λ−1
λ

, and let ψ= γ(U)

γ(U)+n−1
. If λ≥ n then PoF(P)≤ nψ, otherwise

PoF(P)≤ ψui∗(δi∗)

(1− ρ)ui∗
(

Φn−λ
ui∗ ,β,τ

(δi∗)
) . (6)

Furthermore, there exists a family of instances for which this bound is tight.

Proof. See Appendix K. �

The term ρn−λ in the denominator of Inequality (5) in Theorem 3 suggests that the dependence

on n is exponential, as λ is independent of n. The same dependence appears in Corollary 1. However,

Theorem 3 and Corollary 1 are not tight. To show that the dependence is exponential when the

time horizon is infinite, we have the following proposition, which relies on a deeper analysis of the

bound of Theorem 4. We note that when the time horizon is finite, the dependence on n is no

longer exponential (see Proposition 5 below).

Proposition 2. For any τ > 0, β > 0, and λ ∈ N≥1, there exists a family of instances {Pn}∞n=λ

where Pn = (n,u,∞, τ, β) such that for n = λ, PoF(Pn) = 1, and for n > λ, the price of fairness

grows exponentially in n, i.e., PoF(Pn) = Ω(2n).

Proof. See Appendix N.2. �

We now analyze the macro effects of the heterogeneity of the utility functions. In the following

proposition, we show that the heterogeneity cannot affect the price of fairness by a factor greater

than n. To formalize this statement, let Pu = (n,u,∞, τ, β) be a problem instance where u is

arbitrary, and consider any P = (n,U ,∞, τ, β), where u1 = u and u2, . . . , un are upper bounded by

u1 and lower bounded by u1/γ for some γ ≥ 1. The heterogeneity of U is clearly at most γ, and we

show that for any γ, the price of fairness of P is at most n times the price of fairness of Pu.

Proposition 3. Let Pu = (n,u,∞, τ, β), n ∈N≥1, τ > 0, β ≥ 0, for arbitrary u. Let γ ∈R≥1, and

let P = (n,U ,∞, τ, β), where U = {u1, . . . , un}, u1 = u, and ui satisfies u(t)

γ
≤ ui(t) ≤ u(t) for all

i∈ [2, n] and t≥ 0. Then

PoF(P)≤min{γ,n} ·PoF(Pu).
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Proof. See Appendix N.3. �

It is more difficult to quantify the effect of the concavity of the utility functions on the price of

fairness, in part since there is not a unique measure of concavity. The dependence on the concavity

appears in Theorem 3 and Corollary 1 through the cadence only; however these bounds are not

tight. In the tight bound in Theorem 4, the dependence on the concavity appears through both the

cadence and the discounted reciprocal function. To simplify the effect of the concavity, we consider

a family of problem instances that have identical cadences, so that the difference in concavity is

measured only through the discounted reciprocal function.

Instance 1. Fix β = 0.1, let τ > 0 be such that e−β(τ+1) = 3
4
, and let n∈N≥4. For any x∈ [0.5,1],

set ux(t) = tx for t∈ [0,1] and ux(t) = 1 for t > 1. For x∈ [0.5,1], denote Px = (n,ux,∞, τ, β).

The following result shows that a higher concavity leads to a lower price of fairness.

Proposition 4. Let β, τ , and n be as in Instance 1. Then for every x,x′ ∈ [0.5,1] such that x< x′,

it holds that PoF(Px)<PoF(Px′).

Proof. See Appendix N.4. �

The same qualitative dependence on the concavity (i.e., that the price of fairness is inversely

correlated with the concavity) appears in Corollary 1. Quantitatively, the bound of Corollary 1

increases exponentially with the cadence. Figure 2d shows that this bound is far from tight, and

that not only is the true dependence on the cadence not exponential, it is not even convex.

6.3. Tight Bounds for the Undiscounted Problem

The following result gives tight upper bounds on the price of fairness when β = 0.

Theorem 5. Let P = (n,u,T, τ,0), n ∈ N≥1, 0 < T < ∞, and τ > 0. Let δ =

Bounded-Cadence(T,τ)(u), and m= T+τ
δ+τ

. Then

PoF(P)≤


m

m−(m mod n)
, if n≤m,

T−(m−1)τ

T−(n−1)τ
, if n>m and T > (n− 1)τ.
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Otherwise, if T ≤ (n− 1)τ , then PoF(P) =∞.

Furthermore, for any τ > 0 and n∈N≥1 there exists a function u such that the above inequalities

hold with equality for PT = (n,u,T, τ,0) for countably many values of T .

Proof. See Appendix L. �

The parameter m in the theorem statement corresponds to the number of intervals in the optimal

unconstrained schedule. Note that by the definition of Bounded-Cadence, m in the theorem

statement is an integer. When T <∞ and β = 0, the macro effects of n are as follows. There is

some threshold θ such that if n≤ θ, the price of fairness is bounded by a constant, and when n> θ

it is increasing and convex8 in n.

Proposition 5. For any τ > 0, T <∞, and utility function u, let Pn = (n,u,T, τ,0) for n∈N≥2.

There exists some m < T
τ

+ 1 such that PoF(Pn) ≤ 2 if n < m, PoF(Pn) =∞ if n ≥ T
τ

+ 1, and

PoF(Pn) is increasing and convex (in the discrete sense) in n if m≤ n< T
τ

+ 1.

Proof. See Appendix N.5. �

The macro effects of τ when β = 0 can be seen in Figure 3c. From Theorem 5, we can see that

the price of fairness is actually unbounded. As τ grows, the number of intervals in the optimal

utilitarian schedule decreases, and as τ → T
n−1

, the denominator of T−(m−1)τ

T−(n−1)τ
approaches zero.

When β = 0 and T <∞, we can see the micro-effects come into play: a little flexibility in the

number of participating agents, the length of the time horizon, or the switching cost allows us to

reduce the utility loss resulting from the fairness requirement to zero or almost zero. To formalize

this concept, we use the following definition.

Definition 5. Let u be a utility function, and for any n ∈ N>0 and 0 ≤ τ ≤ T ≤ ∞, denote

Pn,τ,T = (n,u,T, τ,0). The set of instances {Pn,τ,T |n∈N>0,0≤ τ ≤ T ≤∞} is

1. Recurrently Optimal in T if for any n> 0, τ > 0, and integer c > 0, there exists a Tc > 0 and

a sequence 0<T1 <T2 < · · ·<Tc such that PoF(Pn,τ,Ti) = 1 for all i∈ [c].

8 Convex in the discrete sense.
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(a) PoF as a function of the number of agents

n, where u(t) = 1− e−3t, T = 1003, τ = 2.

(b) PoF as a function of the time horizon T ,

where u(t) =
√
t, τ = 1, n= 7.

(c) PoF as a function of the switching cost τ ,

where u(t) =
√
t, T = 1000, n= 7.

(d) PoF as a function of the concavity of the util-

ity function u(t) = ta, parameterized by a, with

T = 100, τ = 1, n= 20.

Figure 3 The price of fairness as a function of the time horizon, switching cost, number of agents and concavity

of the utility function. For all sub-figures, β = 0.

2. Recurrently Optimal in τ if for any n > 0 and integer c > 0, there is a T > 0 and a sequence

0< τ1 < τ2 < · · ·< τc such that PoF(Pn,τi,T ) = 1 for all i∈ [c].

3. Asymptotically Recurrently Optimal in n if for any τ > 0, ε > 0, and integer c > 0, there is a

T > 0 and a sequence 0<n1 <n2 < · · ·<nc such that PoF(Pni,τ,T )< 1 + ε for all i∈ [c].

Proposition 6. For any utility function u, the set of instances {Pn,τ,T = (n,u,T, τ,0), n∈N>0,0≤

τ ≤ T ≤∞} is recurrently optimal in τ and T and asymptotically recurrently optimal in n.

Proof. See Appendix N.6. �
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Figures 3a, 3b, and 3c illustrate the results of Proposition 6 with respect to n, T , and τ , respec-

tively. We chose T = 1003 (and not, e.g., T = 1000) in Figure 3a to illustrate that the set of

instances is only asymptotically recurrently optimal. For this value of T , the number of intervals

in the optimal schedule is 367, a prime number. Therefore, there is no value of n (other than

n∈ {1,367}) for which the price of fairness is one. Nevertheless, we can reduce the value loss signif-

icantly by appropriately selecting the number of agents. Note that while increasing τ may reduce

the price of fairness, the utilities of both the optimal utilitarian and the optimal fair schedule are

non-increasing in τ .

For completeness, we include a bound for the infinite horizon undiscounted case.

Theorem 6. Let P = (n,U ,∞, τ,0), n ∈N≥1, τ > 0, and ψ = γ(U)

γ(U)+n−1
. Then PoF(P)≤ nψ. Fur-

thermore, for any n∈N≥1 and τ > 0, there exists a set of n utility functions U for which this bound

is tight.

7. Conclusion, Limitations, and Future Research

In this paper, we analyzed the contribution of the different problem parameters to the loss of utility

resulting from constraining the schedules to be envy-free. We found that the parameters affect the

price of fairness differently on the macro and micro levels, and derived insights into how a schedule

planner could reduce the price of fairness by tuning the parameters over which they have control.

Our results lay the groundwork for further exploration in this area. First, our model has several

simplifying assumptions, and it would be interesting to remove some (or all) of them in future

research. For instance, we assume the switching cost is fixed, the discount factor is uniform, and the

agents’ utilities only depend on the start times and durations of their assigned intervals. None of

these might be the case in practice. Second, while envy-freeness is an attractive notion of fairness,

one could study the price of fairness in resource scheduling for other fairness notions. Third, it may

be interesting to study dynamic variations, where part of the problem input is uncertain and is
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revealed in an online fashion. There are several ways in which uncertainty could be incorporated into

the model: the agents’ utilities could change as new information becomes available; the switching

cost for a medical device could be stochastic; the number of agents and time horizon could change

dynamically.

Finally, we remark on the complexity of computing optimal envy-free schedules for heterogeneous

agents. Algorithm 1, which computes an asymptotically optimal envy-free schedule for problem

instances with homogeneous agents, can be implemented efficiently. In the proof of Theorem 3 (in

the Appendix), we demonstrate the existence of an envy-free schedule for heterogeneous agents

using the Brouwer fixed point theorem. This theorem is not constructive, and computing a fixed

point is known to be PPAD-hard (Hirsch et al. 1989, Chen and Deng 2009). We conjecture that

computing an envy-free schedule for heterogeneous agents is NP-hard. In future work, it would be

interesting to explore tractable approximation schemes for envy-free schedules for heterogeneous

agents.
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Appendix A: Summary of Notation

Symbol Description Definition Remarks

T Time horizon - T > 0

τ Switching time - τ > 0

β Discount factor - β ≥ 0

γ(U) Heterogeneity supui,uj∈U,x≥0
ui(x)

uj(x)
γ(U)≥ 1

ψ - γ(U)

γ(U)+n−1
-

Cadenceτ (f) Cadence arg maxt>0
f(t)

t+τ
-

Cadence(β,τ)(u) Cadence arg maxt>0
u(t)

1−e−β(t+τ) Notated by δ

Bounded-Cadence(T,τ)(u) Bounded Cadence arg maxt:(t+τ)|(T+τ)
f(t)

t+τ
Notated by δ

ρi - e−β(δi+τ) -

i∗ ‘Optimal agent’ ∈ arg maxi∈[n]
ui(δi)

1−ρi
-

λ - maxx : ρi∗ ≥ x−1
x

Integer

Φf,β,τ (t) Discounted Reciprocal y≥ 0 : f(y) = e−β(y+τ)f(t) -

OPT (PUC) Value of optimal utilitarian schedule for P

OPT (PEF ) Value of optimal envy-free schedule for P
Table 1 Table of Notation
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Appendix B: Results on Partitions of Geometric Series

We prove several results on partitions of geometric series {a,ar, ar2, . . . , arz} for z ∈N≥0. Lemma 1

assumes that r is sufficiently large, and Lemma 2 extends the result of Lemma 1 to more general

values of r.

Lemma 1. Fix n ∈ N>0, a > 0. If r ∈ [n−1
n
,1), then for every z ∈ N≥0 there exists a partition

A1, . . . ,An of {a,ar, ar2, . . . , arz} such that:

(i) For all j ∈ [n],
∑

x∈Aj
x∈

[
a(1−nrz+1)

n(1−r) , a
n(1−r)

]
.

(ii) There exists some j ∈ [n] for which
∑

x∈Aj
x≤ a

n(1−r) − ar
z+1.

Furthermore, this partition can be found using a greedy assignment.

Proof. Recall that
∑z

i=0 ar
i = a(1−rz+1)

1−r . Note that 0≤ n(1− r)< 1, hence 1
n(1−r) > 1. Fix n

and r. The proof is by induction on z.

Base case. To show (i), note that for z = 0,
∑

x∈Aj
x∈ {0, a} for all j, hence the upper bound

of (i) holds. To see the lower bound of (i), note that

a (1−nrz+1)

n(1− r)
=
a (1−nr)
n(1− r)

. (7)

If n = 1, (7) equals a,
∑

x∈A1
x = a, and the lower bound holds. If n ≥ 2, 1− nr ≤ 0 (as r ≥ 1

2
),

hence (7) is non-positive; as
∑

x∈Aj
x≥ 0, the bound holds.

If n= 1 then (ii) holds as 1
1−r − r≥ 1 (with equality if r= 0). If n> 1 then (ii) holds as there is

some j ∈ [n] for which
∑

x∈Aj
x= 0<a− arz+1 < a

n(1−r) − ar
z+1.

Inductive step. Assume that the lemma holds for z. Denote the partition of {a,ar, . . . , arz}
by Az1, . . . ,A

z
n and take j′ = arg minj

∑
x∈Azj

x. Set the partitions of {a,ar, . . . , arz, arz+1} to be

Az+1
j =Azj for all j 6= j′, and Az+1

j′ =Azj′ ∪{arz+1}. We prove the three bounds: the upper and lower

bounds for (i) and the (upper) bound of (ii):

1. Upper bound of (i): For all j 6= j′,
∑

x∈Am+1
j

x≤ a
n(1−r) from the induction hypothesis (part (i)).

It must hold that
∑

x∈Az
j′
x≤ a

n(1−r) − ar
z+1 from the induction hypothesis (part (ii)), hence∑

x∈Az+1
j′

x≤ a
n(1−r) .

2. Lower bound of (i): If there exists j′′ such that
∑

x∈Aj′′
x< a(1−nrz+2)

n(1−r) , then∑
j 6=j′′

∑
x∈Aj

x=
∑
j

∑
x∈Aj

x−
∑
x∈Aj′′

x

>
a (1− rz+2)

1− r
− a (1−nrz+2)

n(1− r)
(8)

=
a(n− 1)

n(1− r)
,

where Ineq. (8) is due to the assumption that
∑

x∈Aj′′
x < a(1−nrz+2)

n(1−r) . However, then there is

at least one j for which
∑

x∈Aj
x violates the upper bound, as the upper bound implies that∑

j 6=j′′
∑

x∈Aj
x≤ (n− 1) a

n(1−r) .
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3. Part (ii). If for all j ∈ [n], it holds that
∑

x∈Aj
x> a

n(1−r) − ar
z+2 then∑

j∈[n]

∑
x∈Aj

x>
an

n(1− r)
− anrz+2 ≥ a (n−nrz+2)

n(1− r)
,

where the second inequality is because 1
n(1−r) ≥ 1. This is in contradiction to the fact that∑

x∈Aj
x=

a(1−rz+2)
1−r . �

Taking the limits in part (i) of Lemma 1, the following corollary is immediate.

Corollary 2. Fix n∈N>0 and a > 0. If r ∈ [1− 1
n
,1), then there exists a partition A1, . . . ,An of

{a,ar, ar2, . . .} such that for all j ∈ [n],
∑

x∈Aj
x= a

n(1−r) . Furthermore, this partition can be found

using a greedy assignment.

Lemma 2. Let n∈N≥1, a > 0, r ∈ [0,1), and A= {a,ar, ar2, . . . , arz} for some z ∈N≥0. Let λ∈N
be the largest integer such that r≥ λ−1

λ
. Then:

(i) If n≤ λ, there exists a partition A1, . . . ,An of A such that
∑
x∈Aj

x≥ a (1−nrz+1)

n(1− r)
for every

j ∈ [n].

(ii) If n> λ, there exists a partition A1, . . . ,An of A such that
∑
x∈Aj

x≥ a (rn−λ−λrz+1)

λ(1− r)
for every

j ∈ [n].

Proof. If n ≤ λ then r ∈
[
n−1
n
,1
)
, and the lemma follows immediately from Lemma 1.

Otherwise (r < n−1
n

), set Ai = {ari−1} for agents i ∈ [1, n− λ]. Then, for all i ∈ [1, n− λ] it is true

that

ari−1 ≥ arn−λ−1

≥ ar · rn−λ−1

λ(1− r)
(9)

=
arn−λ

λ(1− r)

≥ a (rn−λ−λrz+1)

λ(1− r)
,

where Ineq. (9) follows because r≤ λ
λ+1

, and therefore r
λ(1−r) ≤ 1.

It remains to allocate the set A‡ = {arn−λ, arn−λ+1, . . . , arz} among the λ remaining agents.

Instead, we allocate the infinite set {arn−λ, arn−λ+1, . . .}, noting that we will have allocated the

elements arz+1 arz+2, . . ., which are not in A‡. Substituting n‡ = λ and a‡ = arn−λ, we would like to

allocate a‡, a‡r, . . . among n‡ remaining agents, where r ∈ [1− 1
n‡ ,1). The conditions of Corollary 2

hold for n‡, r‡, and there exists a partition A‡n−λ+1, . . . ,A
‡
n such that for all j ∈ [n−λ+ 1, n],∑

x∈A‡j

x=
a‡

n‡(1− r)
=

arn−λ

λ(1− r)
.
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Recall that our allocation includes the set {arz+1, arz+2, . . .}. It holds that

∞∑
k=z+1

ark =
arz+1

1− r
.

Therefore ∑
x∈Aj

x=
a (rn−λ−λrz+1)

λ(1− r)
,

completing the proof. �

Appendix C: Additional Material for Section 1

C.1. A Proportionally Fair Schedule Might Not Exist

Example 1. Consider a problem with time horizon T = 16, switching cost τ = 14, two agents with

utility functions u(t) =
√
t, and no discounting. If a single agent is allocated the resource for the

entire length of the time horizon, their utility will be 4; hence a schedule is only proportionally

fair if each agent derives a utility of at least 2 from it. However, any schedule where both agents

receive strictly positive utility must have a transfer of the resource, hence only 2 time units are

available, and so neither agent can have a utility greater than
√

2.

Note that the schedule allocating each agent one unit of time is Pareto-efficient and envy-free.

Appendix D: Additional Material for Subsection 4.1

D.1. Cadenceτ (u) is Well-Defined

The next lemma shows that Cadence is well-defined (i.e., the maximizer is finite and unique) for

strictly concave functions.

Lemma 3. Suppose f is increasing, strictly concave, and satisfies limt→∞ f(t)/t = 0, then

Cadenceτ (f) is well-defined.

Proof. Cadenceτ (f) is defined in Eq. (3). Consider the following related optimization

problem:

sup
t≥0

F (t), (10)

where F (t) := f(t)

t+τ
. To show that the cadence is well-defined, we show that the optimal value of

Problem (10) is attained, and that the maximizer is unique.

First, we note that F is continuous as the quotient of two continuous functions with domain R≥0,

where the denominator is strictly positive on R≥0 (for all τ > 0). In addition, F is quasiconcave

since its upper level sets S+
b := {t ∈R : F (t)≥ b}= {t ∈R : f(t)≥ b(t+ τ)} are convex for all b ∈R

by concavity of f . Furthermore, all S+
b are in fact strictly convex as intervals in R (i.e., for any
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t, t′ ∈ S+
b with t 6= t′, λt+ (1−λ)t′ lies in the interior of S+

b for all λ∈ (0,1)) by strict concavity of

f . In addition, the level sets Sb := {t ∈R : F (t) = b}= {t ∈R : f(t) = b(t+ τ)} have empty interior

also by strict concavity of f (in this case, Sb is either empty, a singleton, or the two endpoints of

an interval, due to strict concavity of f). It follows that F is strictly quasiconcave.

Now, F (0) = 0 and F (t) ≥ 0 for all t ≥ 0. By the growth condition limt→∞ f(t)/t = 0, for any

τ > 0,

lim
t→∞

F (t) = lim
t→∞

f(t) t

(t+ τ) t
=

(
lim
t→∞

t

t+ τ

)(
lim
t→∞

f(t)

t

)
= 0,

which verifies that F is not unbounded. Since F is continuous, strictly quasiconcave, F (0) = 0, and

limt→∞F (t) = 0, we conclude that the supremum of F on R≥0 is attained and the maximizer is

unique. �

D.2. Cadenceτ (u) for Non-Strictly Concave Utility Functions

Example 2 below shows that if the utility function is not strictly concave, there may not be a finite

solution to

arg max
t>0

u(t)

t+ τ
. (11)

Example 2. Suppose u(t) = t (linear utility), then u(t)/(t+ τ) is strictly increasing in t. Hence,

the optimal value of Problem (11) is supt>0
u(t)

t+τ
= 1. However, the optimal solution is not attained

because there is no finite t∈R≥0 that attains this value.

Example 3 below gives a non-strictly concave function where the optimal value is attained, but

the optimal solution is not unique.

Example 3. Let

u(t) =


t if t∈ [0,2],
2
3
(t+ 1) if t∈ (2,5],

4 if t > 5,

and τ = 1. Then, u(t)/(t+ τ) = 2/3 for all t ∈ [2,3], which is the optimal value of maxt>0
u(t)

t+τ
. It

follows that the maximizer is not necessarily unique.

When u is not strictly concave, we can extend the definition of Cadence to be the smallest

maximizer of u(t)/(t+ τ), i.e.,

Cadenceτ (u) = min

{
arg max

t>0

u(t)

t+ τ

}
.
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D.3. Comparing the Cadence of Two Functions

Lemma 4. Let f :R→R and g :R→R be increasing, strictly concave, and differentiable functions,

and let τ > 0. If the right derivatives of f and g are identical at zero, f(0) = g(0), and f ′′(t)≤ g′′(t)
for all 0≤ t≤Cadenceτ (f), then Cadenceτ (f)≤Cadenceτ (g).

Proof. Define the functions F (t) := f(t)

t+τ
and G(t) := g(t)

t+τ
, then Cadenceτ (f) =

arg maxt>0F (t) and Cadenceτ (g) = arg maxt>0G(t). Since f and g are both strictly concave,

Cadenceτ (f) and Cadenceτ (g) are both uniquely defined. The first derivatives of F and G are:

F ′(t) =
(t+ τ)f ′(t)− f(t)

(t+ τ)2

and

G′(t) =
(t+ τ)g′(t)− g(t)

(t+ τ)2
,

respectively. Since the denominator (t+ τ)2 in both expressions is strictly positive, the first-order

optimality condition for Cadenceτ (f) = arg maxt>0F (t) is equivalent to F̄ ′(t) := (t + τ)f ′(t) −
f(t) = 0. Similarly, the first-order optimality condition for Cadenceτ (g) = arg maxt>0G(t) is equiv-

alent to Ḡ′(t) := (t+ τ)g′(t)− g(t) = 0. Since both Cadenceτ (f) and Cadenceτ (g) are unique,

the equations F̄ ′(t) = 0 and Ḡ′(t) = 0 both have unique solutions. In particular, the functions F̄ ′

and Ḡ′ both only cross zero once and from above.

Next, we have

F̄ ′(0) = τf ′(0)− f(0) = τg′(0)− g(0) = Ḡ′(0),

by assumption that f(0) = g(0) and f ′(0) = g′(0), so F̄ ′ and Ḡ′ coincide at t = 0. Taking the

derivatives of F̄ ′ and Ḡ′ gives:

F̄ ′′(t) = (t+ τ)f ′′(t) + f ′(t)− f ′(t) = (t+ τ)f ′′(t)

and

Ḡ′′(t) = (t+ τ)g′′(t) + g′(t)− g′(t) = (t+ τ)g′′(t).

It follows that F̄ ′′(t) ≤ Ḡ′′(t) for all t ≥ 0 by assumption that f ′′(t) ≤ g′′(t) for all t ≥ 0. Since

F̄ ′(0) = Ḡ′(0), we must have

F̄ ′(t) = F̄ ′(0) +

∫ t

0

F̄ ′′(t)dt≤ Ḡ′(0) +

∫ t

0

Ḡ′′(t)dt= Ḡ′(t), ∀t≥ 0.

In particular, for any t ≥ 0 with F̄ ′(t) = 0 (which satisfies the first-order optimality condition

for arg maxt>0F (t)), we have Ḡ′(t) ≥ 0. Recall that Ḡ′ only crosses zero once and from above,

then if Ḡ′(t) = 0 also holds we have Cadenceτ (f) = Cadenceτ (g). Otherwise, if Ḡ′(t)> 0 then

Ḡ′ has not yet crossed zero and we must have Cadenceτ (f)<Cadenceτ (g). We conclude that

Cadenceτ (f)≤Cadenceτ (g). �
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D.4. Generalizing Cadence to Discounting and Finite Horizon

The following result shows that Cadence(β,τ) and Bounded-Cadence(T,τ) are indeed generaliza-

tions of Cadenceτ .

Lemma 5. Let υ(t) be continuous, strictly positive, and non-increasing. Let fβ(t) :=
∫ t

0
e−β xυ(x)dx

for all t≥ 0 for β > 0, and let f(t) :=
∫ t

0
υ(x)dx for all t≥ 0. Then:

(i) limβ→0 Cadence(β,τ)(fβ) =Cadenceτ (f).

(ii) limT→∞Bounded-Cadence(T,τ)(f) =Cadenceτ (f).

Proof. Let F (t) := f(t)

t+τ
. We compute Cadenceτ (f) by solving:

max
t>0

F (t)≡max
t>0

f(t)

t+ τ
≡max

t>0

∫ t
0
υ(x)dx

t+ τ
.

Since f is strictly concave, F is strictly unimodal and the above optimization problem has a

unique optimal solution t∗ = Cadenceτ (f) by Lemma 3. The function F is differentiable, so t∗ is

characterized by the first-order optimality condition. The derivative of F is:

F ′(t) =
υ(t)(t+ τ)− f(t)

(t+ τ)2
.

Since the denominator of F ′(t) is always strictly positive, the condition F ′(t) = 0 simplifies to

F̄ ′(t) := υ(t)(t+ τ)− f(t) = 0.

(i) Let Fβ(t) :=
fβ(t)

t+τ
. We compute Cadence(β,τ)(fβ) by solving

max
t>0

Fβ(t)≡max
t>0

fβ(t)

t+ τ
≡max

t>0

∫ t
0
e−βxυ(x)dx

1− e−β(t+τ)
.

Since fβ is strictly concave, Fβ is strictly unimodal and the above optimization problem has a

unique optimal solution t∗(β) = Cadence(β,τ)(fβ) which depends on β. The functions Fβ for all

β > 0 are differentiable, and so t∗(β) is characterized by the first-order optimality condition. The

derivative of Fβ is:

F ′β(t) =
f ′(t)(1− e−β(t+τ))−βe−β(t+τ)f(t)

(1− e−β(t+τ))2
=
e−β t

(
υ(t)(1− e−β(t+τ))−βe−βτf(t)

)
(1− e−β(t+τ))2

,

using f ′(t) = e−β tυ(t). Since the denominator of F ′β(t) is always strictly positive, and e−β t is always

strictly positive, the condition F ′β(t) = 0 simplifies to:

F̄ ′β(t) := υ(t)

(
1− e−β(t+τ)

β

)
−
∫ t

0

e−β(x+τ)υ(x)dx= 0.

Using l’Hopital’s rule gives

lim
β→0

1− e−β(t+τ)

β
= lim

β→0

(t+ τ)e−β(t+τ)

1
= t+ τ.
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Then for all t≥ 0 we have

lim
β→0

F̄ ′β(t) = lim
β→0

[
υ(t)

(
1− e−β(t+τ)

β

)
−
∫ t

0

e−β(x+τ)υ(x)dx

]
=υ(t) lim

β→0

(
1− e−β(t+τ)

β

)
−
∫ t

0

(
lim
β→0

e−β(x+τ)

)
υ(x)dx

=F̄ ′(t),

where the second equality follows by the dominated convergence theorem, and the third equality

uses l’Hopital’s rule.

Since t∗ is the unique solution to F̄ ′(t) = 0, we have F̄ ′(t)> 0 for t < t∗ and F̄ ′(t)< 0 for t > t∗.

Choose any δ > 0, then in particular we have F̄ ′(t∗− δ)> 0 and F̄ ′(t∗+ δ)< 0. Let

ε= min{|F̄ ′(t∗− δ)|, |F̄ ′(t∗+ δ)|},

where ε > 0. Since limβ→0 F̄
′
β(t∗−δ) = F̄ ′(t∗−δ) and limβ→0 F̄

′
β(t∗+δ) = F̄ ′(t∗+δ), there is a β′ > 0

such that

max{|F̄ ′β(t∗− δ)− F̄ ′(t∗− δ)|, |F̄ ′β(t∗+ δ)− F̄ ′(t∗+ δ)|}< ε/2, ∀0<β <β′.

It follows that F̄ ′β(t∗−δ)> ε/2> 0 and F̄ ′β(t∗+δ)<−ε/2< 0. Since F̄ ′β(t) = 0 has a unique solution

t∗(β), F̄ ′β is continuous, and F̄ ′β(t∗− δ)> 0 and F̄ ′β(t∗+ δ)< 0, we must have t∗(β)∈ (t∗− δ, t∗+ δ)

for all 0<β <β′. The choice of δ was arbitrary, so limβ→0 t
∗(β)→ t∗ must hold, which is the desired

result.

(ii) Let PT = (n,f,T, τ,0) for all T <∞. In a tight schedule for PT with m intervals all with the

same duration, the duration t > 0 must satisfy mt+ (m− 1)τ = T (since there are m− 1 switches

when there are m intervals) or equivalently m(t+ τ) = T + τ . The total utility of this schedule is

mf(t), and the corresponding average utility is:

mf(t)

T
=
T + τ

T

f(t)

t+ τ
,

where we divide by T to get the average utility over the time horizon [0, T ]. Recall F (t) = f(t)

t+τ
and

t∗ ∈ arg maxt>0F (t) =Cadenceτ (f).

Let

X (T ) := {t > 0 : (t+ τ)|(T + τ)} ≡
{
T − (m− 1) τ

m
:m= 1, . . . , b(T + τ)/τc

}
be the set of feasible durations for tight schedules of PT where all intervals have the same duration

(recall that (t+ τ)|(T + τ) denotes that t+ τ divides T + τ). For each t∈X (T ), the corresponding

schedule has average utility
(
T+τ
t+τ

)
f(t)

T
=
(
T+τ
T

)
F (t) over [0, T ]. We maximize the average utility

by solving

max
t∈X (T )

(
T + τ

T

)
F (t)≡

(
T + τ

T

)
max
t∈X (T )

F (t),
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since we can factor out the constant T+τ
T

in the objective. Then, we see that

Bounded-Cadence(T,τ)(u) = arg max
t∈X (T )

(
T + τ

T

)
F (t)≡ arg max

t∈X (T )

F (t),

only depends on T through X (T ).

For T ≥ t∗, we define

t∗l (T ) :=max
m

{
T − (m− 1) τ

m
≤ t∗ :m= 1, . . . , b(T + τ)/τc

}
=
T − (d(T + τ)/(t∗+ τ)e− 1) τ

d(T + τ)/(t∗+ τ)e
,

and

t∗u(T ) := min
m

{
T − (m− 1) τ

m
≥ t∗ :m= 1, . . . , b(T + τ)/τc

}
=
T − (b(T + τ)/(t∗+ τ)c− 1) τ

b(T + τ)/(t∗+ τ)c
.

These are the two points in X (T ) that are closest to t∗. Since F is quasi-concave,

arg maxt∈X (T )F (t)∈ {t∗l (T ), t∗u(T )}. Note that

lim
T→∞

T − ((T + τ)/(t∗+ τ)− 1) τ

(T + τ)/(t∗+ τ)
= lim

T→∞

(T + τ)(t∗+ τ)− (T + τ)τ

(T + τ)
= t∗,

and also that

lim
T→∞

(T + τ)/(t∗+ τ)

d(T + τ)/(t∗+ τ)e
= 1 and lim

T→∞

(T + τ)/(t∗+ τ)

b(T + τ)/(t∗+ τ)c
= 1.

It follows that limT→∞ t
∗
l (T ) = t∗ and limT→∞ t

∗
u(T ) = t∗, which is the desired result.

�

D.5. Computing the Cadence

Lemma 6. (i) Cadenceτ (f) and Bounded-Cadence(T,τ)(f) can be computed efficiently for non-

decreasing and strictly concave f .

(ii) Cadence(β,τ)(f) can be computed efficiently for f(t) =
∫ d

0
e−β xυ(x)dx where υ ≥ 0 is non-

increasing (as in Eq. (1)).

Proof. (i) To compute Cadenceτ (f), we solve maxt>0F (t) := f(t)/(t+ τ). We see that F is

quasi-concave since its upper level sets S+
b = {t≥ 0 : f(t)≥ b(t+ τ)} are convex for any level b≥ 0.

It follows that F is unimodal, so we can maximize it with binary search.

Bounded-Cadence(T,τ)(f) is a maximization problem over the feasible region {t : (t + τ) |

(T + τ)}. Note that Bounded-Cadence(T,τ)(f) shares the same objective F (t) as Cadenceτ (f),

which is unimodal. Then, we can similarly do binary search to maximize the unimodal function F

over the feasible region {t : (t+ τ) | (T + τ)}.
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(ii) We compute Cadence(β,τ)(f) for f(t) =
∫ t

0
e−βxυ(x)dx for non-increasing υ by solving

maxt>0F (t) := f(t)/(1− e−β(t+τ)). For threshold b ≥ 0, the upper level set of F is S+
b = {t ≥ 0 :

f(t)≥ b(1− e−β(t+τ))}. Let gb(t) := f(t)− b(1− e−β(t+τ)) so that S+
b ≡ {t≥ 0 : gb(t)≥ 0}. We have

f ′(t) = e−β tυ(t) and

g′b(t) = e−β tυ(t)− bβe−β(t+τ) = e−β t(υ(t)− bβe−βτ ).

We have e−β t > 0 for all t≥ 0 so the sign of g′b(t) is determined by the expression υ(t)− bβe−βτ

where bβe−βτ > 0 is constant in t and υ(t)≥ 0 is non-increasing in t. Then the function g′b(t) only

crosses zero from above (i.e., it is first positive and then becomes negative). It follows that gb(t) is

unimodal (it is first non-decreasing and then non-increasing). Consequently, S+
b is an interval and

is thus a convex set for all b≥ 0, so F is quasi-concave. Then, F can be efficiently maximized with

binary search. �

D.6. Monotonicity of Cadence

We require the following result for the proof of Proposition 6.

Lemma 7. Let υ(t) be strictly positive and non-increasing, and let fβ(t) :=
∫ t

0
e−β xυ(x)dx for all

t≥ 0 and β > 0, as in Eq. (1). Then

(i) Cadenceτ (f) is strictly increasing in τ .

(ii) Cadence(β,τ)(fβ) is strictly increasing in τ , and strictly increasing in β for β ≥ 1/τ .

Proof. (i) Recall that Cadenceτ (f) is defined as the solution to the optimization problem:

arg max
t>0

F (t) :=
f(t)

t+ τ
.

Let t∗(τ) =Cadenceτ (f) as a function of τ . The first derivative of the objective F is

F ′(t) =
(t+ τ)f ′(t)− f(t)

(t+ τ)2
.

Since F is unimodal, the first-order condition F ′(t∗(τ)) = 0 is sufficient for optimality. Since the

denominator in F ′(t) is always strictly positive for t≥ 0, the first-order condition simplifies to (t+

τ)f ′(t) = f(t). Define g(t) := f(t)

f ′(t) and h(t; τ) := t+ τ , then the first-order condition is determined

by the intersection g(t) = h(t; τ).

Note that g(t) and h(t; τ) for all τ ≥ 0 are strictly increasing in t. In particular, g is strictly

increasing by the fact that the numerator f is strictly increasing and the denominator f ′ is

non-increasing (by concavity of f). Also notice that h(0; τ) = τ > 0 = g(0) for all τ > 0. Since

Cadenceτ (f) is unique by strict concavity of f , t∗(τ) is the unique solution of g(t) = h(t; τ).

Since h(0; τ) > g(0), it must be that g(t) > h(t; τ) for all t > t∗(τ) and the functions g(t) and

h(t; τ) only cross once. Since h(t; τ) is strictly increasing in τ for all t≥ 0, for any τ ′ > τ we have

g(t∗(τ))<h(t∗(τ); τ ′). This implies that t∗(τ ′)> t∗(τ), which is the desired result.
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(ii) Let Fβ(t) :=
fβ(t)

1−e−β(t+τ) for all t≥ 0, and recall Cadence(β,τ)(f) is given by the solution to

the optimization problem:

max
t>0

Fβ(t)≡max
t>0

fβ(t)

1− e−β(t+τ)
≡max

t>0

∫ t
0
e−βxυ(x)dx

1− e−β(t+τ)
.

Let t∗(β, τ) denote the optimal solution to Cadence(β,τ)(fβ) as a function of β > 0 and τ > 0.

Since log is monotone, we can equivalently maximize log(Fβ(t)). The first-order condition for the

maximization of log(Fβ(·)) is

d

dt
log(Fβ(t)) =

e−βtυ(t)∫ t
0
e−βxυ(x)dx

− βe−β(t+τ)

1− e−β(t+τ)
.

Rearranging terms gives that the equality d
dt

log(Fβ(t)) = 0 holds if and only if:

e−βtυ(t)

βe−β(t+τ)
−
∫ t

0
e−βxυ(x)dx

1− e−β(t+τ)
=

υ(t)

βe−βτ
−Fβ(t) = 0.

Let k(β, τ) := βe−βτ , so that d
dt

log(Fβ(t)) = 0 if and only if υ(t)/k(β, τ)−Fβ(t) = 0.

Note that Fβ(t) is decreasing in β since the numerator is decreasing and the denominator

is increasing. Furthermore, k(β, τ) is decreasing in β for β ≥ 1/τ . Then, υ(t∗(β, τ))/k(β′, τ) −
Fβ′(t

∗(β, τ)) is increasing in β′ for β ≥ 1/τ , and it follows that t∗(β, τ) is increasing in β for β ≥ 1/τ .

Next, note that k(β, τ) is decreasing in τ . Then, υ(t∗(β, τ))/k(β, τ ′)−Fβ(t∗(β, τ)) is increasing

in τ ′, and it follows that t∗(β, τ) is increasing in τ . �

Appendix E: Additional Material for Subsection 4.2

E.1. Φf,β,τ is Well-Defined

Lemma 8. Suppose f :R≥0→R≥0 is continuous and non-decreasing. Then, Φf,β,τ (t) is well-defined

for all t≥ 0, and Φf,β,τ is non-decreasing in t.

Proof. Fix t≥ 0 and consider the equation f(y) = e−β(y+τ)f(t) in the variable y≥ 0. If t= 0,

then f(t) = f(0) = 0 and the solution to this equation is y= 0. Otherwise, suppose t > 0, then the

LHS (f(y)) is non-decreasing in y by assumption, and the RHS (e−β(y+τ)f(t)) is strictly decreasing

in y. Since both the LHS and RHS are continuous and e−βτf(t)> f(0) = 0 for t > 0, it follows that

they cross exactly once. This implies that there is a unique solution to f(y) = e−β(y+τ)f(t) in y≥ 0,

since otherwise the LHS and RHS would not cross at all or they would cross more than once.

Now, choose t1 ≤ t2 and let y1 = Φf,β,τ (t1) so that f(y1) = e−β(y1+τ)f(t1). Since f is non-

decreasing, we must have

f(y1) = e−β(y1+τ)f(t1)≤ e−β(y1+τ)f(t2).

If f(t1) = f(t2), then f(y1) = e−β(y1+τ)f(t2) and y1 = Φf,β,τ (t2). Otherwise, if f(t1) < f(t2) then

f(y1) < e−β(y1+τ)f(t2). This implies that y1 < Φf,β,τ (t2), again using the fact that e−β(y+τ)f(t) is

strictly decreasing in y. �
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E.2. Comparing Discounted Reciprocal Functions

Lemma 9. Let c > 0 be a real number and let f and g be two non-decreasing functions such that

f(0) = g(0) = 0. If for every z ∈ [0, c] it holds that:

for every t∈ [0, z],
g(t)f(z)

g(z)
≥ f(t),

then for any real-valued β, τ > 0, t∈ [0, c], and any integer p≥ 1, Φp
f,β,τ (t)≥Φp

g,β,τ (t).

Proof. The proof is by induction. Denote

Φf,β,τ (t) ={y ∈ [0, t] : hf (y) := f(y)/f(t) = e−β(y+τ)},

Φg,β,τ (t) ={y ∈ [0, t] : hg(y) := g(y)/g(t) = e−β(y+τ)}.

Note that Φf,β,τ (t) and Φg,β,τ (t) are always singletons since hf and hg are both non-decreasing and

e−β(y+τ) is strictly decreasing, so these functions can cross exactly once. Now, for any t∈ [0, c], the

value of Φf,β,τ (t) is given by the intersection between hf (y) and e−β(y+τ), and the value of Φg,β,τ (t)

is given by the intersection between hg(y) and e−β(y+τ) (the function e−β(y+τ) is common to both

Φf,β,τ (t) and Φg,β,τ (t)). We can take z = t in the assumption of the lemma to obtain

g(y)f(t)

g(t)
≥ f(y), ∀y ∈ [0, t].

This immediately implies hg(y) ≥ hf (y) for all y ∈ [0, t], and so hg intersects e−β(y+τ) before hf

does. It follows that Φg,β,τ (t)≤Φf,β,τ (t).

Now suppose Φp
f,β,τ (t)≥Φp

g,β,τ (t) for all t∈ [0, c], we will show it holds for p+ 1:

Φp+1
f,β,τ (t) =Φf,β,τ (Φ

p
f,β,τ (t))

≥Φf,β,τ (Φ
p
g,β,τ (t))

≥Φg,β,τ (Φ
p
g,β,τ (t))

=Φp+1
g,β,τ (t),

where the first inequality is by monotonicity of Φf,β,τ and the induction hypothesis that Φp
f,β,τ (t)≥

Φp
g,β,τ (t), and the second inequality is by the fact that Φf,β,τ (t)≥Φg,β,τ (t). �

Appendix F: Proof of Theorem 1

In this section, we prove Theorem 1. We first give a short outline of the proof. To prove the

first bullet point, we require a simple observation, Observation 1, and two preliminary lemmas:

Lemmas 10 and 11. Observation 1 states that if all intervals of a schedule have the same length,

they can all be allocated to a single agent with no loss of utility. In Lemma 10, we show that if

T =∞, there exists some optimal (utilitarian) schedule in which all intervals have the same length.
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Taken together with Observation 1, we establish that there is an optimal schedule for T =∞
in which all intervals have the same duration and they are all allocated to the same agent. In

Lemma 11, we show that the length of this interval corresponds to the cadence of this agent’s

utility, by considering a homogeneous problem instance with this utility function. For the second

bullet point, we show that when T is as in the statement of Theorem 1, the truncation of the

schedule of Lemma 11 at T is optimal. We prove some auxiliary results for the first bullet point

in Subsection F.1 and for the second bullet point in Subsection F.2. We complete the proof of

Theorem 1 in Subsection F.3.

F.1. Auxiliary Results for the First Bullet Point

The following observation is true because for any t ≥ 0 and U = {u1, . . . , un}, there exists i ∈ [n]

such that ui(t)≥ uj(t) for all j ∈ [n].

Observation 1. Let PT = (n,U , T, τ, β), for β ≥ 0 and 0 ≤ T ≤ ∞, and let π be an arbitrary

schedule for PT such that I(π) = {Ik}Kk=1 and dk = d` for all k, `∈ [1,K] (where K =∞ for T =∞,

and {sk}k≥1 are arbitrary feasible start times). Then, there exists π′ and i∈ [n] such that π′i = I(π)

and π′j = ∅ for all j 6= i, and ∑
i∈[n]

ui(π
′)≥

∑
i∈[n]

ui(π).

Lemma 10. Let P∞ = (n,U ,∞, τ, β), where β ≥ 0. There exists a schedule π ∈Π(P) that is optimal

for PUC∞ where I(π) = {Ik}k≥1, and Ik = (sk, d) for some d> 0 for all k≥ 1.

Proof. Towards a contradiction, suppose there is no such optimal schedule (and so all optimal

schedules have at least two intervals with different durations). Let π be an optimal schedule for

PUC∞ , set I = {Ik}k≥1 where Ik = (sk, dk) for all k≥ 1, and let ν be the smallest integer such that:

dν 6= dν+1 and dj = dj+1 for all j ∈ {1, . . . , ν−1}. Let A= {I1, I2, . . . , Iν−1} and B = {Iν+1, Iν+2, . . .};
in other words, I(π) =A∪{Iν}∪B. Denote d∗ = d1 = · · ·= dν .

By Observation 1, we can assume w.l.o.g. that A⊂ π1 (i.e., that all intervals in A are allocated

to agent 1). Then u1(A) =
∑ν−1

j=1 e
−β(j−1)(d∗+τ)u1(d∗) is the total utility that agent 1 gets from A,

and u1(Iν) = e−β(ν−1)(d∗+τ)u1(d∗) is the utility that agent 1 gets from Iν . For all j ≥ ν+ 1, let ζ(j)

denote the agent to which Ij is assigned in π. Let B† = {I†k}k≥ν+1, I†k = (sk− sν+1, dk) be the set of

intervals identical to B except that their start times have been reduced by sν+1 (in other words,

B† is the set of intervals of I if time started at sν+1 instead of 0). Let u(B†) denote the total utility

that would be derived from B† if the intervals were allocated to the same agents as in π (i.e., if for

each j ≥ ν+ 1, I†j is allocated to ζ(j)).

Let I ′ = {I ′1, I ′2, . . . , I ′ν−1, I
′
ν+1, I

′
ν+2, . . .} be such that for all j < ν, I ′j = Ij, and for all j ≥ ν + 1,

I ′j = (sj − d∗ − τ, dj). Simply put, I ′ is obtained from I by removing Iν and shifting all of the

intervals after Iν to the left, so that the schedule is tight. Let π′ ∈Π(P) be a schedule for I ′ where

each interval I ′j is allocated to the same agent as Ij is allocated in π. Then
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u(π) = u1(A) +u1(Iν) + e−βν(d∗+τ)u(B†)>u(A) + e−β(ν−1)(d∗+τ)u(B†) = u(π′), (12)

otherwise π′ would be an optimal schedule for which the durations of the (ν−1)th and νth intervals

are different, which would contradict the choice of π. Simplifying Eq. (12), we get

u1(d∗) + e−β(d∗+τ)u(B†)>u(B†). (13)

Next consider the schedule π‡ where I(π‡) = A ∪ {Iν , I‡ν} ∪ B‡, I‡ν = (sν + d∗ + τ, d∗), and B‡ =

{I‡ν+1, I
‡
ν+2, . . .} where I‡i = (si +d∗+ τ, di) for i≥ ν+ 1, and I‡i is allocated to the same agent as Ii

is under π. The set B‡ is identical to B, except that the intervals are shifted to the right by d∗+ τ .

B‡ is also identical to B†, except the intervals are all shifted to the left by (ν+ 1)d∗+ τ . Then,

u(π‡) =u1(A) +u1(Iν) + e−β(d∗+τ)u(Iν) + e−β(ν+1)(d∗+τ)u(B†)

>u1(A) +u1(Iν) + e−βν(d∗+τ)u(B†) = u(π),

where the inequality is due to Eq. (13). Therefore u(π‡)> u(π), which contradicts the optimality

of π. �

For i ∈ [n], define PUC∞, i = (n,ui,∞, τ, β). We show that for any i ∈ [n], there is an optimal

utilitarian schedule for PUC∞, i where all intervals have the same duration, and that this optimal

duration is precisely the cadence of ui.

Lemma 11. Let P∞, u = (n,u,∞, τ, β), n ∈ N≥1, τ > 0, β > 0, and δ = Cadence(β,τ)(u). Set Ik =

(sk, dk) with sk = (k − 1)(δ + τ) and dk = δ for all k ≥ 1. Then any π = {π1, . . . , πn} with I(π) =

{Ik}k≥1 is an optimal schedule for PUC∞, u. Furthermore, OPT
(
PUC∞, u

)
= u(δ)

1−e−β(δ+τ) .

Proof. By Lemma 10, there is an optimal schedule π where all intervals have the same

duration. We show that the schedule is optimal if the common duration is δ = Cadence(β,τ)(u).

Given OPT
(
PUC∞, u

)
, let δ∗ be an optimal solution of

max
t1≥0

{
u(t1) + e−β(t1+τ)OPT

(
PUC∞, u

)}
.

Then OPT
(
PUC∞, u

)
= u(δ∗) + e−β(δ∗+τ)OPT

(
PUC∞, u

)
, or equivalently

OPT
(
PUC∞, u

)
=

u(δ∗)

1− e−β(δ∗+τ)
.

For δ=Cadence(β,τ)(u),
u(δ)

1− e−β(δ+τ)
= max

t≥0

u(t)

1− e−β(t+τ)
.

By the definition of δ,

OPT
(
PUC∞, u

)
=

u(δ∗)

1− e−β(δ∗+τ)
≤ u(δ)

1− e−β(δ+τ)
. (14)
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Since u(δ)

1−e−β(δ+τ) is the total discounted utility of the schedule where all intervals have duration δ,

u(δ)

1− e−β(δ+τ)
≤OPT

(
PUC∞, u

)
. (15)

Therefore, from Ineq. (14) and (15),

OPT
(
PUC∞, u

)
=

u(δ)

1− e−β(δ+τ)
,

and so the schedule where all intervals have duration δ=Cadence(β,τ)(u) is optimal. �

F.2. Auxiliary Results for the Second Bullet Point

The following lemma describes the loss of utility due to truncating the optimal utilitarian schedule

for an infinite horizon at some finite T such that T = m(δi∗ + τ)− τ , where m is a (sufficiently

large) integer.

Lemma 12. Let P∞ = (n,U ,∞, τ, β), n ∈ N≥1, τ > 0, β > 0, δi = Cadence(β,τ) (ui), i∗ ∈
arg maxi∈[n]

ui(δi)

1−e−β(δi+τ)
, and ρ= e−β(δi∗+τ). Let m>n be some integer, set T =m(δi∗ + τ)− τ , and

let PT = (n,U , T, τ, β). Then

OPT
(
PUCT

)
= (1− ρm)OPT

(
PUC∞

)
. (16)

Proof. To demonstrate equality, we show that each side of Eq. (16) is greater than or equal

to the other side.

• OPT (PUCT ) ≥ (1 − ρm)OPT (PUC∞ ): Let π be an optimal schedule for PUC∞ , in which each

interval in I(π) has duration δi∗ ; one such schedule must exist by Lemma 11. For any T <∞,

let πT = {πTi }i∈[n] be the truncation of π to include only those intervals that end at or before

time T , i.e., where πTi := {Ik ∈ πi : sk + dk ≤ T} for all i∈ [n].

Then we have

OPT
(
PUCT

)
≥ ui∗(πT ,PT )

=
m−1∑
k=0

ρkui∗(δi∗)

= ui∗(δi∗)
1− ρm

1− ρ
. (17)

From Lemma 11, OPT (PUC∞ ) = ui∗ (δi∗ )

1−ρ . Combining this equality with Ineq. (17) gives the

inequality.

• OPT (PUCT ) ≤ (1 − ρm)OPT (PUC∞ ): Assume the contrary, i.e., OPT (PUCT ) > (1 −
ρm)OPT (PUC∞ ). Let π be an optimal schedule for PUC∞ with I(π) = {I1, I2, . . .} and let πT be

an optimal schedule for PUCT . For integer m as in the statement of the lemma, let πT :∞ be

the schedule π restricted to the tail intervals {Im+1, Im+2, . . .}. Then, define the new schedule

π† = πT ∪πT :∞ which is feasible for PUC∞ . However,
∑

i∈[n] ui(π
†)>

∑
i∈[n] ui(π), contradicting

the optimality of π for PUC∞ . �
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F.3. Putting It All Together

Theorem 1. Let P = (n,U , T, τ, β), n ∈ N≥1, τ > 0, β > 0, and for each i ∈ [n], denote δi =

Cadence(β,τ) (ui) and ρi = e−β(δi+τ). Set i∗ ∈ arg maxi∈[n]
ui(δi)

1−ρi
. Let Ik = (sk, δi∗) with sk = (k −

1)(δi∗ + τ) for all k such that sk + δi∗ ≤ T . Set π= {π1, . . . , πn}, where πi∗ = {Ik}k≥1 and πj = ∅ for

all j 6= i∗. For any m∈Z, denote Tm =m(δi∗ + τ)− τ .

• If T = Tm for some m∈Z, then π is an optimal schedule for PUC.

• Otherwise, for any ε > 0, there exists mε ∈Z>0 such that if T > Tmε then∑
i∈[n]

u(π)≥ (1− ε)OPT
(
PUC

)
.

Proof. We prove each bullet point separately.

First bullet point: Lemma 11 characterizes an optimal schedule for homogeneous agents when

T =∞. Consider now the n optimal schedules for P∞, i, for i∈ [n], where P∞, i = (n,ui, T, τ, β). From

Lemma 10 and Observation 1, we know that there is some agent i for which the schedule for P∞, i is

also optimal for P∞. From Lemma 11, we know that OPT
(
PUC∞, i

)
= u(δi)

1−e−β(δi+τ)
, and so clearly, from

the definition of i∗ in the statement of Theorem 1, the optimal schedule for P∞, i∗ is also optimal for

P∞. To complete the proof, we show that when T = Tm, the truncation of the schedule of Lemma 11

for P∞, i∗ at T is optimal. Formally, set u= ui∗ , and let Pu = (n,u,T, τ, β) and P∞, u = (n,u,∞, τ, β).

For all k ≥ 1, let Ik = (sk, δ) with sk = (k− 1)(δ + τ), where δ = Cadence(β,τ)(u). Let π∞ be an

optimal schedule for PUC∞, u; that is, I(π∞) = {Ik}k≥1. Let m be as in the statement of Theorem 1;

that is, T =m(δ+ τ)− τ for some integer m. Let πT be such that I(πT ) = {I1, I2, . . . , Im}, suppose

for a contradiction that πT is not optimal for PUCu , and denote the optimal schedule for PUCu by

π∗.

Let πT :∞ be the schedule π∞ restricted to the tail intervals {Im+1, Im+2, . . .}. Define a new

schedule π† = π∗ ∪ πT :∞. This schedule is feasible for PUC∞, u. However,
∑

i∈[n] ui(π
†)>

∑
i∈[n] ui(π),

contradicting the optimality of π∞ for PUC∞, u.

Second bullet point: For any ε > 0, set mε = ln (ε)

ln (ρi∗ )
. For any integer m > 0, define Tm =

m(δi∗ + τ)− τ , and set Pm = (n,u,Tm, τ, β). From Lemma 12, OPT
(
PUCmε

)
= (1−ρmε)OPT (PUC∞ ).

As OPT (PUC∞ )≥OPT (PUC),∑
i∈[n]

u(π)≥OPT
(
PUCmε

)
= (1− ε)OPT

(
PUC∞

)
≥ (1− ε)OPT

(
PUC

)
,

where π is the schedule defined in the theorem statement. �

The next corollary to Theorem 1 follows immediately from the above proof and Lemma 10.

Corollary 3. Let P∞ = (n,U ,∞, τ, β), n ∈ N≥1, τ > 0, β ≥ 0, and let P∞, i = (n,ui,∞, τ, β) for

each i∈ [n]. Then OPT
(
PUC∞

)
= max

i∈[n]
OPT

(
PUC∞, i

)
.
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Appendix G: Pseudocode for the Greedy Algorithm

Algorithm 2: Greedy

Input: P = (n,u,T, τ, β)
Output: A schedule π.
δ←Cadence(β,τ) (u)
ρ← e−β(δ+τ)

m= max{k : k(δ+ τ) + δ≤ T}
for i∈ [n] do

πi = ∅
end
for k ∈ [0,m] do

j← arg mini∈[n] ui(π)
πj⇐ πj ∪ (k(δ+ τ)}, δ)

end
return π= {π1, . . . , πn}

Appendix H: Proof of Theorem 2

In this section, we prove Theorem 2. We first give a short outline of the proof. To prove the first

bullet point of Theorem 2, we introduce a new definition, (m,n)-envy-freeness: For problem P, a

schedule π is (m,n)-envy-free for m≤ n if ui(πi)≥ ui(πj) for all i ∈ [m], j ∈ [n]. In other words, a

schedule is (m,n)-envy-free if at least m agents do not prefer another agent’s allocation to their

own. In the homogeneous setting, this definition implies that u(πi) = u(πj) for all i, j ∈ [m].

We consider a family of problem instances that is auxiliary to P, (where P = (n,u,∞, τ, β) is as

in the theorem statement). For each m≤ n, let Pm = (m,u,∞, τ, β) be identical to P, except that

it only contains the agents 1, . . . ,m. Let PEF(m,n) denote the following problem: compute a schedule

π ∈Π(P) that maximizes the sum of (all of) the agents’ utilities, subject to π being (m,n)-envy-

free. The advantage of this definition is that it allows us to use induction, as it does not impose the

assumption that all agents have the same utility in an optimal schedule. We show in Lemma 14

(below) that the output of Algorithm 1, when it is executed on Pm, is an optimal (m,n)-envy-free

schedule. Setting m= n completes the proof.

We first prove a technical lemma.

Lemma 13. Let β ∈R>0, and let u : R≥0→R≥0 be a utility function in the form of Eq. (1) where

u(t) =
∫ t

0
e−β xυ(x)dx for all t≥ 0. For any constant y ∈R>0, let f(t, y) := u(t) + ye−β(t+τ).

(i) The function f(t, y) is unimodal in t.

(ii) The function f(t, y) attains its maximum at t∗(y) where υ(t∗(y)) = βye−βτ , and t∗(y) is

non-increasing in y.

Proof. (i) Since u(t) =
∫ t

0
e−β xυ(x)dx for all t≥ 0, we have u′(t) = e−βtυ(t). Differentiate f

w.r.t. t to obtain:

d

dt

[
u(t) + ye−β(t+τ)

]
= e−βtυ(t)−βye−β(t+τ) = e−βt

(
υ(t)−βye−βτ

)
.
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This expression is the product of the function e−βt, which is strictly positive on t > 0, and the

function υ(t)−βye−βτ . Note that βye−βτ is a constant and υ is non-increasing. Then, υ(t)−βye−βτ

only crosses zero at most once and from above (it is first positive and then negative). It follows

that f is first non-decreasing and then non-increasing, and so it is unimodal.

(ii) By the previous part, the necessary condition for f to reach its maximum in t for fixed y

is ∂
∂t
f(t, y) = 0. Then, we must have υ(t) = βye−βτ at any stationary point t of f , which must

also be a maximizer of f since it is unimodal. Since υ(t) is non-increasing, the solution t∗(y) is

non-increasing in y. �

The following lemma is the main building block in our proof that Algorithm 1 computes an

optimal fair schedule.

Lemma 14. For any P = (n,u,∞, τ, β) the output of Algorithm 1 on Pm = (m,u,∞, τ, β) is optimal

for PEF(m,n).

Proof. The proof is by induction on m. Note that the values of δ, ρ, and λ∗ that are

computed in Algorithm 1 are independent of m (δ = Cadence(β,τ) (u), ρ = e−β(δ+τ), and λ∗ =

maxλ∈[n]

{
λ : ρ≥ λ−1

λ

}
). The base cases are the set of values {m :m≤ λ∗} where we have ρ> m−1

m
.

Then, by Corollary 2, the greedy allocation of the intervals of the optimal schedule of PUC generates

an envy-free schedule, as the corollary implies a partition of the intervals into sets π1, . . . , πn such

that u(πi) = ui(δ)

m(1−ρ) for each i ∈ [m], and πm+1, . . . , πn are empty sets. Note that in this case,

Algorithm 1 simply returns the schedule generated by Algorithm 2 (i.e., it does not execute any

push right operation and it does not truncate the schedule). As the total utility of this schedule

is equal to the total utility of the optimal schedule and it is envy-free for the first m agents, this

schedule is optimal for PEF(m,n).

For the inductive step, we assume that the lemma statement holds for m−1 agents; i.e., that the

output of Algorithm 1 on Pm−1 = (m− 1, u,∞, τ, β) is optimal for PEF(m−1,n). We show that it holds

for m agents as well. For any schedule π, let u[k](π) =
∑

i∈[k] ui(π) denote the total utility of agents

1, . . . , k under π. Let πm−1 and πm denote the schedules output by Algorithm 1 for Pm−1 and Pm,

respectively. By the induction hypothesis, πm−1 is optimal for PEF(m−1,n). Let π∗m denote the optimal

fair schedule for PEF(m,n), and let δm and δ∗m denote the duration of the first interval in πm and

π∗m, respectively. When T =∞ and m>λ∗, Algorithm 1 executed on m agents allocates the first

interval to agent m, and the remaining m− 1 agents are allocated πm−1, pushed right by δm + τ .

If the first interval is identical in both πm and π∗m, then the schedules must be identical (otherwise

π∗m allocates more utility than the utility of πm−1 for the remaining intervals, contradicting the

inductive hypothesis). Therefore, in order to verify that πm = π∗m, it suffices to show that:

1. δ∗m ≤ δm,
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2. δ∗m ≥ δm.

Intuitively, if the first inequality does not hold then, as π∗m allocates a larger interval to agent

m, there is simply not enough utility available to be allocated to the remaining agents, hence the

resulting schedule is not envy-free. Establishing the second inequality is slightly more involved; we

show that the total utility of the schedule is unimodal in the length of the first interval, and that

it is increasing at δ∗m.

Towards a contradiction to the first inequality, assume that δ∗m > δm. Then, assuming w.l.o.g.

that agent m is allocated the first interval in both schedules, the utility of the first m− 1 agents

in π∗m can be bounded as follows:

u[m−1](π
∗
m)≤ e−β(δ∗m+τ)u[m−1](πm−1) (18)

< e−β(δm+τ)u[m−1](πm−1)

= u[m−1](πm).

The first inequality is because πm−1 is an optimal schedule in which agents 1, . . . ,m− 1 receive all

of the intervals, the second is due to the assumption that δ∗m > δm.

As both πm and π∗m are (m,n)-envy free, it holds that u1(π∗m) =
u[m−1](π

∗
m)

m−1
and u1(πm) =

u[m−1](πm)

m−1
, but then, combining with Eq. (18), we have that u[m](πm)>u[m](π

∗
m), contradicting the

optimality of π∗m.

For the second inequality, assume that δ∗m < δm. We again assume w.l.o.g. that the first interval

is allocated to agent m in both schedules, and note that it is possible that agent m is allocated

additional intervals.

Define f(t, y) = u(t) + e−β(t+τ)y. By Algorithm 1,

u[n](πm) = u(δm) + e−β(δm+τ)u[n](πm−1) = f
(
δm, u[n](πm−1)

)
. (19)

As the length of the first interval in π∗m is δ∗m, the optimal total utility of all n agents (i.e., including

agent m) for all remaining intervals is upper bounded by

e−β(δ∗m+τ)u[m−1](πm−1).

This is because u[m−1](πm−1) is the optimal utility for a fair schedule when m − 1 agents are

allocated equal shares. We note that this is where we require (m,n)-envy-freeness, as we do not

exclude the possibility here that other agents, such as agent m, are also allocated some intervals

in πm−1. Therefore,

u[n](π
∗
m)≤ u(δ∗m) + e−β(δ∗m+τ)u[m−1](πm−1)

= f
(
δ∗m, u[n](πm−1)

)
. (20)
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Eq. (20) holds because u[m−1](πm−1) = u[n](πm−1) as the agents m,m+ 1, . . . , n are not allocated

any intervals in πm−1 under Algorithm 1.

Let t∗ := arg maxt>0 f(t, u[n](πm−1)). By Lemma 13, f is unimodal. Therefore, if δ∗m < δm ≤ t∗,
then f(δ∗m, u[n](πm−1))< f(δm, u[n](πm−1)). Taken with Eq. (19) and Ineq. (20), this will imply that

u[n](πm)>u[n](π
∗
m), in contradiction to the optimality of π∗m.

To establish that δm ≤ t∗, we show that δm ≤Cadence(β,τ)(u)≤ t∗. From Lemma 11, we know

that the function f(t,OPT (PUC)) attains it maximum at Cadence(β,τ)(u), as the optimal schedule

for PUC has all intervals of length Cadence(β,τ)(u). As u[n](πm)≤OPT (PUC) (because u[n](πm)

is upper bounded by the optimal total utility OPT (PUC)), we have that t∗ ≥Cadence(β,τ) (u) by

Lemma 13 part (ii). Finally, as ρ< m−1
m

, it must hold that δm ≤Cadence(β,τ)(u), as otherwise the

total utility allocated to the remaining m−1 agents would be strictly less than (m−1)u(δm). �

H.1. Putting it all together

Theorem 2. Let P = (n,u,T, τ, β), n∈N≥1, τ > 0, β > 0, δ=Cadence(β,τ) (u), and ρ= e−β(δ+τ).

Let π be the schedule generated by Algorithm 1. Then π is envy-free, and:

• If T =∞ then π is an optimal envy-free schedule for P.

• Otherwise, for any ε > 0, there exists Tε > 0 such that if T > Tε then∑
i∈[n]

u(π)≥ (1− ε)OPT
(
PEF

)
.

Proof. We prove each bullet point separately.

First bullet point: By setting m= n in Lemma 14 gives that the output of Algorithm 1 on

P = (m,u,∞, τ, β) is optimal for PEF(n,n), and hence is the optimal envy-free schedule.

Second bullet point: Let π† denote the schedule after the first loop in Algorithm 1; that is,

π† is the schedule before the truncation at T . Let π†[λ∗] be π†, restricted to the first λ∗ agents,

that is, π†[λ∗] = {π†1, . . . , π
†
λ∗}. Let tλ∗ be the start time of the first interval in π†[λ∗]. Let Ptλ∗ ,∞ =

(n,u, [tλ∗ ,∞), τ, β) denote the problem that is identical to P except the time horizon is [tλ∗ ,∞)

instead of [0, T ]. It is straightforward to adapt the proof of Theorem 1 to see that π†[λ∗] is an optimal

utilitarian schedule for Ptλ∗ ,∞, and similarly, that there exists some Tε such that if π†[λ∗] is truncated

at Tε (denote this truncated schedule by π‡[λ∗]) then∑
i∈[λ∗]

ui(π
‡
[λ∗])>

(
1− ε

n

)
ui(π

†
[λ∗]).

By the first bullet point, π† is the optimal schedule for PEF∞ , where P∞ = (n,u,∞, τ, β). As the

utility of each agent is reduced by at most ε
n

after truncation of π†, we have that∑
i∈[n]

u(π)≥ (1− ε)OPT (PEF∞ )≥ (1− ε)OPT
(
PEF

)
,

where π is the schedule defined in the theorem statement. �
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Appendix I: Proof of Theorem 3 and Corollary 1

In order to prove Theorem 3, we would like to compare OPT (PUC) and OPT (PEF ). However, it is

unclear how to directly compare these two values. We therefore use several auxiliary problems and

a chain of their relationships. For any problem P = (n,U , T, τ, β), we denote PT =P for clarity and

define the following variants. Let P∞ = (n,U ,∞, τ, β) be the problem with the same parameters

as P, except that the time horizon is infinite. For each i∈ [n], let PT, i = (n,ui, T, τ, β) and P∞, i =

(n,ui,∞, τ, β) be the variants of P and P∞, respectively, with homogeneous utility functions. To

prove the theorem, we compare the utilities of the optimal utilitarian and envy-free schedules of

these problems.

Theorem 3. Let P = (n,U , T, τ, β), n ∈ N≥1, τ > 0, β > 0, and for each i ∈ [n], denote δi =

Cadence(β,τ) (ui) and ρi = e−β(δi+τ). Set i∗ ∈ arg maxi∈[n]
ui(δi)

1−ρi
, and let ρ= ρi∗. Assume that T =

m(δi∗+ τ)− τ for some integer m>n such that ρn ≥ nρm, let λ∈N be the largest integer such that

ρ≥ λ−1
λ

, and let ψ= γ(U)

γ(U)+n−1
. Then if n> λ,

PoF(P)≤ λψ (1− ρm)

ρn−λ−λρm
, (5)

otherwise (if n≤ λ), PoF(P)≤ nψ(1−ρm)

1−nρm .

Proof. Let PT , P∞, PT, i and P∞, i be as above. Then

OPT
(
PEFT

)
≥ 1

nψ
max
i∈[n]

OPT
(
PEFT, i

)
(21)

≥ ρn−λ−λρm

ψλ
max
i∈[n]

OPT
(
PUC∞, i

)
(22)

=
ρn−λ−λρm

ψλ
OPT

(
PUC∞

)
(23)

=
ρn−λ−λρm

ψλ (1− ρm)
OPT

(
PUCT

)
. (24)

Ineq. (21) is due to Lemma 15, which we state and prove below, in Subsection I.1. In this lemma,

we show that if there exists a schedule π that is envy-free for homogeneous agents with utility

function ui (for some i ∈ [n]), then we can convert it to an envy-free allocation for heterogeneous

agents with utility functions u1, . . . , un using the following procedure. Let all agents except agent

i (who has utility function ui) choose their favorite allocation from π in serial fashion (i.e., each

one chooses their favorite allocation from the remaining ones). Then, for all j ∈ [n] \ {i}, scale

the durations of the intervals in agent j’s allocation by some factor aj while keeping the start

times fixed. We show that there exists such a scaling a1, . . . , an for which the resulting allocation

is envy-free by using Brouwer’s Fixed Point Theorem.
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Ineq. (22) is due to Lemma 16, which we prove below. In this lemma, we show how to convert an

optimal infinite-horizon UC schedule for homogeneous agents to a finite-horizon EF schedule, with

only a small loss of utility. To do this, we note that all of the intervals of an optimal utilitarian

schedule have an identical duration (by Lemma 11). As the schedule is tight, all agents have an

identical utility function and β > 0, the utilities take the values of an infinite geometric series. We

use the results on partitions of geometric series (Appendix B) to show that these intervals can be

partitioned into sets such that the total utility for the intervals in each set is approximately the

same. The assumption that ρn ≥ nρm is made so that the bounds on OPT
(
PEFT, i

)
in Lemma 16

will be meaningful.

Eqs. (23) and (24) are due to results that we used to prove Theorem 1. Eq. (23) is due to

Corollary 3 (a corollary to Theorem 1) which states that the optimal schedule for PUC∞ is exactly

the optimal schedule for PUC∞, i for the i ∈ [n] which produces the highest utility. That is, it is the

schedule with the highest utility out of the optimal schedules for PUC∞,1,PUC∞,2, . . . ,PUC∞,n. Finally,

Eq. (24) is due to Lemma 12, which precisely characterizes the loss of utility due to truncating the

infinite horizon optimal utilitarian schedule at T .

The proof for n≤ λ is similar and is omitted. �

I.1. Lemma 15 (Converting an EF schedule for homogeneous agents to an EF schedule for

heterogeneous agents)

Lemma 15. Let PT = (n,U , T, τ, β), n ∈ N≥1, 0 ≤ T ≤ ∞, τ > 0, β ≥ 0, and ψ = γ(U)

γ(U)+n−1
. For

i∈ [n] denote PT, i = (n,ui, T, τ, β). Then

OPT
(
PEFT

)
≥ 1

nψ
max
i∈[n]

OPT
(
PEFT, i

)
.

Proof. We will show that OPT (PEFT )≥ 1
nψ
OPT

(
PEFT, i

)
holds for every i∈ [n]. Without loss

of generality, we show that it holds for i= n.

Let π be an optimal schedule for PEFT,n, where πi = {(si,1, di,1), . . . , (si,Kj , di,Ki)} (for some Ki ≥ 1)

for all i∈ [n]. Because π is envy-free, agent n is indifferent between π1, . . . , πn (i.e., un(πi) = un(πj)

for all i, j ∈ [n]). Let πai = {(si,1, adi,1), . . . , (si,Ki , adi,Ki)} correspond to allocation πi where all the

interval durations have been scaled by a≥ 0. Now reassign π1, . . . , πn to the agents as follows: Set

χ(1) = arg maxi∈[n]{u1(πi)}, χ(2) = arg maxi∈[n]\{χ(1)}{u2(πi)}, and so on. In other words, agent 1

chooses their favorite allocation, agent 2 chooses their favorite from the remaining allocations, and

so on. Assume w.l.o.g. that χ(i) = i for all i ∈ [n]. Each agent (weakly) prefers their allocation to

πn. Let

yi = min
y≥0
{y : ui(π

y
i )≥ ui(πn)}
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be the smallest possible scaling y of πi so that agent i does not feel envy w.r.t. πn. As agent i

weakly prefers πi to πn, yi ≤ 1.

For each i∈ {1, . . . , n− 1}, define fi : [0,1]→ [0,1]n−1 coordinate-wise as follows:

fi(ai)[j] = max
y∈[0,1]

{
y : ui(π

ai
i )≥ ui(πyj )

}
.

In simple terms, if πi is scaled down by ai, fi(ai)[j] is the maximal amount that πj can be scaled

down such that agent i will feel no envy with respect to agent j’s allocation.

Let ~a= (a1, . . . , an−1) be the vector of scaling factors, where ai is the ith coordinate. Define the

continuous function f : [0,1]n−1→ [0,1]n−1 coordinate-wise as follows:

f(~a)[j] =


aj if yj ≤ aj ≤mini∈[n] fi(ai)[j],

mini∈[n−1] fi(ai)[j] if aj >mini∈[n] fi(ai)[j],

yj otherwise.

Note that f(~a) = ~a if and only if the allocation that results from scaling π by ~a is envy-free.

By Brouwer’s Fixed Point Theorem, as f is a continuous function from a convex compact subset

([0,1]n−1) to itself, it has a fixed point. Therefore there exists an envy-free allocation in which

agent n is allocated πn. For a fixed point ~a,

OPT
(
PEFT

)
=
∑
i∈[n]

ui(π
ai
i )

≥
∑
i∈[n]

ui(πn) (25)

≥ un(πn) + (n− 1)
un(πn)

γ(U)
(26)

=

(
γ(U) +n− 1

nγ(U)

)
OPT

(
PEFT,n

)
, (27)

where Ineq. (25) is because the allocation is envy-free, Ineq. (26) is because for each agent i 6= n,

ui(πn)≥ un(πn)

γ(U)
(from the definition of heterogeneity), and Eq. (27) is because π was chosen to be

an optimal schedule for PEFT,n. �

I.2. Lemma 16 (Converting an optimal infinite-horizon UC schedule for homogeneous agents

to a finite-horizon EF schedule)

Lemma 16. Let P∞, u = (n,u,∞, τ, β), n ∈ N≥1, τ > 0, β > 0, δ = Cadence(β,τ)(u), and ρ =

e−β(δ+τ). Let λ ∈ N be the largest integer such that ρ ≥ λ−1
λ

. Let m> n be some integer, set T =

m(δ+ τ)− τ , and let Pu = (n,u,T, τ, β). Then:

(i) If n≤ λ, OPT (PEFu )≥ (1−nρm)OPT
(
PUC∞, u

)
.

(ii) If n> λ, OPT (PEFu )≥ n(ρn−λ−λρm)
λ

OPT
(
PUC∞, u

)
.
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Proof. Let π be an optimal schedule for PUC∞, u, where all Ik have the same duration δ

(by Lemma 11, such a schedule exists). Then u(Ik) = ρk−1u(δ) for all k ≥ 1 which constitute a

geometric series: a,ar, ar2, . . ., where a= u(δ) and r= ρ. We chose λ to be the largest integer such

that ρ≥ λ−1
λ

. By Lemma 11, OPT
(
PUC∞, u

)
= u(δ)

1−ρ .

By Lemma 2, if n≤ λ, we can allocate the intervals to the agents such that each agent has utility

at least
u(δ)(1−nρm+1)

n(1−ρ) , and so OPT (PEFu ) ≥ u(δ)(1−nρm+1)
1−ρ . If n > λ, we can allocate the intervals

to the agents such that each agent has utility at least
u(δ)(ρn−λ−nρm+1)

λ(1−ρ) , and so OPT (PEFu ) ≥
nu(δ)(ρn−λ−nρm+1)

λ(1−ρ) , also by Lemma 2. �

Appendix J: Proof of Corollary 1

Corollary 1. Let P = (n,U ,∞, τ, β), n ∈N≥1, τ > 0, β > 0, and define ρ, λ, and ψ as in Theo-

rem 3. Then, if n> λ,

PoF(P)≤ λψ

ρn−λ
,

otherwise PoF(P)≤ nψ.

The following simple observation shows that it is possible to decrease the total utility of a given

schedule by an arbitrarily small amount for a single agent; this is due to the continuity of the

utility functions.

Observation 2. Let P = (n,U , T, τ, β), let π be a feasible schedule for P, and let I(π) = {Ik}k≥1

where Ik = (sk, dk) for all k≥ 1. Then, for any i∈ [n] and any 0≤ ε≤ ui(π,P) there exists a schedule

π′ with I(π′) = {I ′k}k≥1 where I ′k = (sk, d
′
k), d

′
k ≤ dk for all k≥ 1, such that ui(π

′,P) = ui(π,P)− ε
and uj(π

′,P) = uj(π,P) for j 6= i.

Proof of Corollary 1. Let P∞ = (n,U ,∞, τ, β) and for any T ≥ 0, let PT = (n,U , T, τ, β).

From Theorem 1, limT→∞OPT (PUCT ) =OPT (PUC∞ ).

Let π be an optimal schedule for PEF∞ . Choose any ε > 0, and set ε′ = ε
n

. Similarly to Theorem 2

(second bullet point), let T = Tε′ be such that for T > Tε′ , for any agent i,

ui(π
T )≥ ui(π)− ε/n,

where πT is the truncation of π to include only those intervals that end at or before time T .

Leveraging Observation 2, we construct an envy-free schedule for PEFT from πT . As any agent’s

utility in πT is at most ε/n less than its utility in π, we can construct a modified schedule π̃T

such that the following hold: sk + dk ≤ T for all Ik ∈ I(π̃T ), ui(π̃
T )≥ ui(πT )− ε/n for all i ∈ [n],

and ui(π̃
T ) = uj(π̃

T ) for all i, j ∈ [n]. It follows that
∑
ui(π̃

T )≥
∑
ui(π)− ε, and so OPT (PEFT ′ )≥

OPT (PEF∞ )− ε for all T ′ ≥ T . As ε is arbitrary, limT→∞OPT (PEFT ) =OPT (PEF∞ ).

Finally, since PoF (PT ) =
OPT (PUCT )

OPT (PEFT )
, and OPT (PEF∞ )> 0, we can take the limit of the ratio

to get limT→∞PoF (PT ) = PoF (P∞), by taking the limit as m→∞ on both the LHS and RHS of

Eq. (5) to complete the proof. �
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Appendix K: Proof of Theorem 4

To prove Theorem 4, we prove the upper bound (Ineq. (6)) and give a matching lower bound.

To prove the upper bound, we explicitly construct an envy-free schedule, similarly to the proof of

Theorem 3. In this case, however, we allocate the resource more efficiently using the push right

operation of Algorithm 1, thereby reducing the time the resource is left idle (for the most part;

Figure 2a shows that the bound of Corollary 1 is sometimes tighter, showing that the schedule

constructed in the proof of Theorem 3 is sometimes more efficient). The upper bound is shown by

explicitly computing the utility of the envy-free schedule for homogeneous agents. The schedule is

not optimal because: (i) we shorten some of the intervals to facilitate the exact computation of the

utility; and (ii) the utility functions are heterogeneous. The lower bound is established by giving a

family of instances for which there is no loss of utility from either source. The proofs for the upper

and lower bounds are given in Subsections K.1 and K.2 respectively.

Theorem 4. Let P = (n,U ,∞, τ, β), n ∈ N≥1, τ > 0, β > 0, and for each i ∈ [n], denote δi =

Cadence(β,τ) (ui) and ρi = e−β(δi+τ). Set i∗ ∈ arg maxi∈[n]
ui(δi)

1−ρi
, and let ρ= ρi∗. Let λ ∈ N be the

largest integer such that ρ≥ λ−1
λ

, and let ψ= γ(U)

γ(U)+n−1
. If λ≥ n then PoF(P)≤ nψ, otherwise

PoF(P)≤ ψui∗(δi∗)

(1− ρ)ui∗
(

Φn−λ
ui∗ ,β,τ

(δi∗)
) . (6)

Furthermore, there exists a family of instances for which this bound is tight.

Proof. We first prove the upper bound. For each i∈ [n], define P∞,i = (n,ui,∞, τ, β). Without

loss of generality, assume that 1∈ arg maxi∈[n]
ui(δi)

1−e−β(δi+τ)
(this is because we can reorder the utility

functions in U). Then

OPT (PEF∞ )≥ 1

n

(
1 +

n− 1

γ(U)

)
OPT (PEF∞,1) (28)

≥
(1− ρ)u1

(
Φn−λ
u1,β,τ

(δ)
)
OPT (PUC∞,1)

u1(δ)

(
1 +

n− 1

γ(U)

)
(29)

=
(1− ρ)u1

(
Φn−λ
u1,β,τ

(δ)
)
OPT (PUC∞ )

u1(δ)

(
1 +

n− 1

γ(U)

)
, (30)

where Ineq. (28) is due to Lemma 15, which was used in the proof of Theorem 3, Ineq. (29) is due

to Lemma 17, which we prove below, and Eq. (30) is due to Corollary 3 (since we assume that

1∈ arg maxi∈[n]OPT
(
PUC∞, i

)
). Ineq. (6) is then obtained by rearranging Eq. (30).

We prove the lower bound in Lemma 20 below, which describes a family of instances for which

these bounds are tight. �



Vardi and Haskell: Fair scheduling of a scarce resource
58 Operations Research 00(0), pp. 000–000, © 0000 INFORMS

K.1. Proof of the Upper Bound of Theorem 4

Lemma 17. Let P∞,u = (n,u,∞, τ, β), β > 0, and let δ = Cadence(β,τ) (u), and ρ= e−β(δ+τ). Let

λ be the largest integer in [n] such that ρ≥ λ−1
λ

. If λ= n then PoF(P∞,u) = 1, otherwise

OPT (PEF∞,u)≥
n (1− ρ)u

(
Φn−λ
u,β,τ (δ)

)
OPT (PUC∞,u)

u(δ)
.

Proof. If λ= n, the result follows from Corollary 1 (by substituting γ(U) = 1). For the rest

of the proof, assume that λ≤ n−1. We construct an envy-free schedule similarly to Algorithm 1 for

the case T =∞ (i.e., there is no truncation), except that we (possibly) reduce some of the interval

durations so as to accurately compute the utilities. By Lemma 11 there is an optimal utilitarian

schedule for Pu which consists of intervals {Ik}k≥1 where Ik = (sk, dk), sj = (j − 1)(δ + τ), and

dk = δ for all j ≥ 1. Furthermore, {u(Ik)}k≥1 is a geometric series where u(Ik) = ρk−1u(δ) for all

k≥ 1. Similarly to Algorithm 1, we allocate these intervals greedily (using Algorithm 2) to agents

1, . . . , λ, where λ is defined in the lemma statement. By Corollary 2, there exist allocations πi such

that ui(πi) = u(δ)

λ(1−ρ) for agents i∈ {1, . . . , λ}.
As 1−ρ≤ 1

λ
, it holds that u(δ)

λ(1−ρ) ≥ u(δ). For each agent i∈ {1, . . . , λ}, construct a new allocation

π′i such that ui(π
′
i) = u(δ) should it just be u(π′i) on the LHS? It seems we switch to just writing

u here and u with subscripts? , by keeping the start times fixed and only (possibly) reducing

the durations. There exists such an allocation π′i by Observation 2. Denote the intervals of π′

by {I ′j = (sj, d
′
j)}j≥1, where we keep sj = (j − 1)(δ + τ) for all j ≥ 1. We now extend π′ =

{π′1, . . . , π′λ} to an envy-free schedule πEF as in the first loop of Algorithm 1. First, for i ∈ [1, λ]

we set πEFi = π′i, and initialize πEF = {πEF1 , . . . , πEFλ }. Then, for i ∈ [λ+ 1, n]: (i) let di = y such

that u(y) = e−β(y+τ)ui−1(πEF ); (ii) let πEFi include (only) the interval (0, di); and (iii) let πEF =

{πEFi }∪πEF . (di + τ).

Recall the definition of Φ given by Φu,β,τ (t) := {y≥ 0 : u(y) = e−β(y+τ)u(t)}. It is straightforward

to verify that in each iteration of the loop (i= λ+ 1, . . . , n) the length of the first interval, di, is

Φi−λ
u,β,τ (δ). To see this, note that for i= λ+ 1 we have ui−1 (πEF ) = uλ (π′) = u(δ) and hence

dλ+1 = y : u(y) = e−β(y+τ)u(δ) = Φu,β,τ (δ),

and we continue iteratively.

Therefore, at the end of the procedure, the length of the first interval is Φn−λ
u,β,τ (u(δ)), and

OPT (PEF∞,u)≥
∑
i∈[n]

ui(π
EF
i ) = nu

(
Φn−λ
u,β,τ (δ)

)
. (31)

From Lemma 11, OPT (PUC∞,u) = u(δ)

1−ρ and therefore

OPT (PEF∞,u)

OPT (PUC∞,u)
≥
nu
(
Φn−λ
u,β,τ (δ)

)
(1− ρ)

u(δ)
, (32)

completing the proof. �
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K.2. Proof of the Lower Bound of Theorem 4

To establish the lower bound, we will use the following two problem instances, Instances 2 and 3.

Instance 3 is a special case of Instance 2 with homogeneous utilities.

Instance 2. For any τ > 0, β > 0, γ ≥ 1, and integer λ≥ 1 such that logλ−log(λ−1)

β
> τ , set c1 =

log(λ+1)−logλ

logλ−log(λ−1)−βτ , and set ci = c1
γ

for i≥ 2. For i≥ 1, let ui : R≥0→R≥0 be piecewise linear concave

such that ui(t) = cit for 0 ≤ t ≤ η and u(t) = ciη for t > η, where η = logλ−log(λ−1)

β
− τ . For any

n≥ λ, let Pn = (n,Un,∞, τ, β) where Un = {u1, u2, . . . , un}.

Instance 3. For any τ > 0, β > 0, and integer λ ≥ 1 such that logλ−log (λ−1)

β
> τ , set c =

log(λ+1)−logλ

logλ−log(λ−1)−βτ , and let u :R≥0→R≥0 be piecewise linear concave such that u(t) = c t for 0≤ t≤ η
and u(t) = cη for t > η, where η= logλ−log (λ−1)

β
− τ . For n≥ λ, let Ṗn = (n,u,∞, τ, β).

Note that Instance 3 can be obtained from Instance 2 by setting γ = 1. We will show that

Instance 3 is tight for Theorem 4. First, in Lemma 18, we compute the utility of the optimal

envy-free schedule for Instance 3. Lemma 19 adapts this result to Instance 2. Finally, Lemma 20

uses these results to show that the bound of Theorem 4 is tight.

Lemma 18. For any τ > 0, β > 0, and integer λ ≥ 1 such that logλ−log(λ−1)

β
> τ , let u be as in

Instance 3, let δ = Cadence(β,τ) (u), and let ρ= e−β(δ+τ). For any n≥ λ, let Pn = (n,u,∞, τ, β).

Then

OPT
(
PEFn

)
= nu

(
Φn−λ
u,β,τ (δ)

)
.

Proof. It is easy to verify that ρ= λ−1
λ

. Consider the construction of the envy-free schedule

in the proof of Lemma 17, and note that when ρ= λ−1
λ

, Ineq. (31) holds with equality. Therefore

Ineq. (32) also holds with equality using OPT (PUC∞,u) = u(δ)

1−ρ . �

Lemma 19. For any τ > 0, β > 0, γ ≥ 1, and integer λ≥ 1 such that logλ−log(λ−1)

β
> τ , let Pn and

Ṗn be as in Instances 2 and 3, respectively. For any n≥ 1, let ψn = γ
γ+n−1

, then

OPT
(
PEFn

)
= nψnOPT

(
ṖEFn

)
.

Proof. As the utility functions of Instance 2 are all scalar multiples of the utility function

of Instance 3, a schedule π is envy-free for Ṗn if and only if it is envy-free for Pn, and furthermore

a schedule is optimal for ṖEFn if and only if it is optimal for PEFn . Let π be an optimal envy-free

schedule for Pn. Assume that each agent receives utility z from π in Pn, for a total utility of nz.

Considering π as a schedule for Ṗn, agent 1 receives utility z, while the other (n−1) agents receive

utility z
γ
, for a total utility of z

(
1 + (n− 1) 1

γ

)
. �

Lemma 20. For any τ > 0, β > 0, γ ≥ 1, and integer λ≥ 1 such that logλ−log(λ−1)

β
> τ , there exists

an infinite sequence of utility functions U∞ = {u1, u2, . . .}, where Un := {u1, . . . , un} for n≥ 1, such

that:
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(i) 1∈ arg maxi≥1
ui(δi)

1−e−β(δi+τ)
;

(ii) e−β(δ1+τ) = λ−1
λ

;

(iii) for any n∈N≥2, γ(Un) = γ;

(iv) setting Pn = (n,Un,∞, τ, β),

• if n≤ λ, PoF(Pn) = nψn,

• if n> λ,

PoF(Pn) =
ψnu1(δ1)

(1− ρ)u1

(
Φn−λ
u1,β,τ

(δ1)
) ,

where δi =Cadence(β,τ) (ui), ρ= λ−1
λ

, and ψn = γ(Un)

γ(Un)+n−1
.

Proof. To prove the lemma, we show that Conditions (i)–(iv) hold for Instance 2. Condi-

tions (i)–(iii) are straightforward to verify; it remains to show that Condition (iv) holds. To do so,

we use Instance 3 (a special case of Instance 2, obtained by setting γ = 1). As noted in the proof

of Lemma 19, a schedule is envy-free for Instance 2 if and only if it is envy-free for Instance 3. For

any n≥ λ, let Pn and Ṗn be as in Instances 2 and 3, respectively.

From Lemma 11, OPT (PUCn ) = u1(δ1)

1−ρ . From Lemma 18, OPT (PEFn ) = nu1

(
Φn−λ
u1,β,τ

(δ1)
)
. There-

fore, by Lemma 19,

OPT
(
ṖEFn

)
=
OPT (PEFn )

nψn
=
u1

(
Φn−λ
u1,β,τ

(δ1)
)

ψn
.

Taking the ratio of OPT (PUCn ) and OPT
(
ṖEFn

)
completes the proof. �

Appendix L: Proof of Theorem 5

To prove Theorem 5, we first show, similarly to the proof of Theorem 1, that all of the intervals

in an optimal utilitarian schedule are the same length. The differences are that here the result

holds for all T <∞, and the length of the interval is Bounded-Cadence(T,τ)(u) rather than

Cadence(β,τ)(u). We then compute the utility of the optimal utilitarian schedule and of the envy-

free schedule that is constructed from the optimal utilitarian schedule by deleting some intervals.

We use these values to upper bound the price of fairness. For the lower bound, we give a family of

instances such that the envy-free schedule constructed in this way is optimal.

Theorem 5. Let P = (n,u,T, τ,0), n ∈ N≥1, 0 < T < ∞, and τ > 0. Let δ =

Bounded-Cadence(T,τ)(u), and m= T+τ
δ+τ

. Then

PoF(P)≤

{
m

m−(m mod n)
, if n≤m,

T−(m−1)τ

T−(n−1)τ
, if n>m and T > (n− 1)τ.

Otherwise, if T ≤ (n− 1)τ , then PoF(P) =∞.

Furthermore, for any τ > 0 and n∈N≥1 there exists a function u such that the above inequalities

hold with equality for PT = (n,u,T, τ,0) for countably many values of T .
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Proof. First note that m = T+τ
δ+τ

is an integer since (δ + τ)|(T + τ) by definition of

Bounded-Cadence(T,τ)(u) (Definition 3). The proofs for the upper and lower bounds are given

in Subsection L.2 and L.3, respectively. We give a short summary of the proof.

For the upper bound, note that if T ≤ (n− 1)τ , then no envy-free schedule exists and therefore

PoF(P) =∞. Lemma 25 establishes the bound for the cases where n ≤m and when n > m and

T > (n− 1)τ .

For the lower bound, we handle the first case (where n≤m) in Lemma 26 and the second (where

n>m and T > (n− 1)τ) in Lemma 27. �

L.1. Preliminary Results for the Proof of Theorem 5

The following lemma is analogous to Lemma 10, but for the finite horizon undiscounted case.

Lemma 21. Suppose u is non-decreasing, concave, and differentiable. Then, for any T > 0 and

1≤m≤ T/τ , the solution d1 = · · ·= dm = T−(m−1)τ

m
is optimal for the optimization problem

max
d1,..., dm∈R≥0

{
m∑
k=1

u (dk) :
m∑
k=1

dk = T − (m− 1)τ

}
.

Proof. Suppose the schedule π with I(π) = {Ik}mk=1 where Ik = (sk, dk) is optimal but that

d1 = · · ·= dm does not hold. Without loss of generality, suppose d1 <d2 (since we can re-order the

intervals without changing the total utility in the undiscounted case). Choose 0< ε < d2− d1 and

define the modified schedule πε with I(πε) = {Iεk}mk=1 where Iεk = (sεk, d
ε
k), d

ε
1 = d1 +ε, dε2 = d2−ε, and

dεk = dk for all k = 3, . . . ,m. Because u′ is non-increasing and d1 < d2, it holds that
∫ d1+ε

d1
u′(t)dt≥∫ d2

d2−ε
u′(t)dt. Therefore,

∑
i∈[n]

u(πε)−
∑
i∈[n]

u(π) =

∫ d1+ε

d1

u′(t)dt−
∫ d2

d2−ε
u′(t)dt≥ 0,

and so
∑

i∈[n] u(πε)≥
∑

i∈[n] u(π). A similar argument holds for all remaining intervals. Hence there

is an optimal solution where all intervals have the same duration. �

Lemma 22. Let f :R≥0→R≥0 be continuous, non-decreasing, concave, and satisfy f(0) = 0. Then,

f(y)

f(t)
≤ y

t
for all 0< t< y.

Proof. We rewrite

f(y)

f(t)
=
f(y)− f(t) + f(t)

f(t)
= 1 +

f(y)− f(t)

f(t)
.

This expression is maximized for any function f that maximizes (f(y)− f(t))/f(t). Since f ′ is

non-increasing by concavity of f , the numerator f(y)− f(t) =
∫ y
x
f ′(ξ)dξ is maximized when f ′ is

constant, and hence when f is linear. �
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Lemma 23. Let P = (n,u,T, τ,0), 0<T <∞, and

mUC = arg max
ξ∈N>0

ξ u

(
T − (ξ− 1)τ

ξ

)
. (33)

Then there exists an optimal schedule π for PUC such that |I(π)| = mUC and dk =

Bounded-Cadence(T,τ)(u) for all Ik = (sk, dk)∈ I(π).

Proof. By Lemma 21, there is some ξ ∈N>0 such that there is an optimal schedule πUC for

P with |I(πUC)|= ξ. In particular, the optimal value of ξ is determined by

max
ξ∈N>0

ξ u

(
T − (ξ− 1)τ

ξ

)
.

Furthermore, dk = T−(ξ−1)τ

ξ
for all Ik = (sk, dk)∈ I(πUC).

Next recall that Bounded-Cadence(T,τ)(u) corresponds to the optimization problem:

max
t:(t+τ)|(T+τ)

u (t)

t+ τ
. (34)

Do the change of variables t= T+τ
ξ
−τ , and note that: (i) ξ is an integer if and only if (t+τ) | (T +τ);

and (ii) the optimal value of Problem (34) must be obtained for t > 0, because u(0) = 0, and any

t > 0 gives nonzero average utility. We then see that Problem (34) is equivalent to the LHS of

arg max
ξ∈N>0

ξ

T + τ
u

(
T − (ξ− 1)τ

ξ

)
= arg max

ξ∈N>0

ξ u

(
T − (ξ− 1)τ

ξ

)
. (35)

Therefore, Bounded-Cadence(T,τ)(u) = T−(mUC−1)τ

mUC
is the duration of each interval in the optimal

schedule πUC . �

Lemma 24. Suppose u is concave, then f(t) = tu
(
T−t τ
t

)
is concave in t for t > 0.

Proof. Let g(s, t) = su(t/s) be the perspective of u, which is concave by concavity of u. For

s > 0, the function g(T − s τ, s) = su
(
T−s τ
s

)
is concave in s, since the composition of a concave

function with an affine mapping is concave. �

L.2. Proof of the Upper Bound of Theorem 5

Lemma 25. Let P = (n,u,T, τ,0) and 0< T <∞. Let πUC be an optimal schedule for PUC such

that dk = δ for some δ > 0 for all Ik = (sk, dk)∈ I(πUC). Let mUC = |I(πUC)|. Then

• If mUC ≥ n, then PoF(P)≤ mUC

mUC−(mUC mod n)
.

• If mUC <n and T > (n− 1)τ , then PoF(P)≤ T−(mUC−1)τ

T−(n−1)τ
.
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Proof. For the first bullet point, note that such a schedule πUC (i.e., one for which dk = δ

for some δ > 0 for all Ik = (sk, dk) ∈ I(π)) exists by Lemma 23. Let K = mUC − (mUC mod n),

and let πK ⊆I (πUC) be some (arbitrary) subset of I (πUC) such that |πK |=K and πK1 , . . . , π
K
n all

have cardinality K
n

(note that K
n

is an integer). Clearly, πK is feasible for P; furthermore, πK is

envy-free because all πKi have the same number of intervals, all with the same duration, and there

is no discounting. It holds that
∑

i∈[n] ui(π
K) = Ku(δ), whereas OPT (PUCu ) =

∑
i∈[n] ui(π

UC) =

mUCu(δ). Noting that
∑

i∈[n] ui(π
K) is a lower bound on OPT (PEFu ) completes the proof.

For the second bullet point, consider the schedule πEF where each πEFi consists of a single

interval Ii = (si, di) with di = T−(n−1)τ

n
. This schedule is feasible as T > (n− 1)τ , and the total

utility derived from it is
∑

i∈[n] ui(π
EF ) = nu

(
T−(n−1)τ

n

)
. The total utility for the optimal schedule

is OPT (PUC) = mUCu
(
T−(mUC−1)τ

mUC

)
by Lemma 23. Note that the function f(t) = tu

(
T−tτ
t

)
is

concave by Lemma 24. Therefore,

PoF(P)≤ mUC u ((T − (mUC − 1)τ)/mUC)

nu ((T − (n− 1)τ)/n)

≤ T − (mUC − 1) τ

T − (n− 1) τ
, (36)

where Ineq. (36) follows by Lemma 22. �

L.3. Proof of the Lower Bound of Theorem 5

We show that the bounds of Theorem 5 are tight separately. We will use a similar family of instances

for each: Instances 4 and 5.

Instance 4. For any integers τ > 0 and n > 0, let u(t) = t for 0≤ t≤ τ
n

and u(t) = τ
n

for t > τ
n

.

For T > 0, define PT = (n,u,T, τ,0).

Instance 5. For any integers τ > 0 and n > 0, let u(t) = t for 0≤ t≤ τ and u(t) = τ for t > τ .

For T > 0, define PT = (n,u,T, τ,0).

Lemma 26. For any n > 0 and τ > 0, let u be as in Instance 4. For any integer m≥ n, let Tm =

τ(m− 1) + mτ
n

. Denote Pm = (n,u,Tm, τ,0). Then for all m≥ n, PoF(Pm) = m
m−(m mod n)

.

Proof. Fix m ≥ n. Let δm := Bounded-Cadence(Tm,τ)(u). It is easy to verify that δm =

Tm+τ
m
− τ and therefore m= Tm+τ

δm+τ
. By Lemma 23, there exists an optimal schedule π for PUCm such

that |I(π)|=mUC , where (substituting the value for Tm into Problem (33)):

mUC = arg max
ξ∈N>0

ξ u

(
τ(m− ξ) + mτ

n

ξ

)
.

Let f(ξ) = ξ u

(
τ(m− ξ) + mτ

n

ξ

)
. For u as in Instance 4, it is easy to verify that

f(ξ) =

{
ξτ
n

if 0< ξ ≤m,
mτ
n
− (ξ−m)τ if m< ξ ≤m

(
1 + 1

n

)
− 1.
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Note that ξ ≤m
(
1 + 1

n

)
− 1 must hold since Tm = τ

(
m
(
1 + 1

n

)
− 1
)
. Hence f(ξ) is uniquely maxi-

mized at ξ =m, and so mUC =m.

If m mod n= 0, then the optimal schedule for PUCm , is also optimal for PEFm since we can directly

assign intervals to create an envy-free schedule. To complete the proof, assume that m mod n 6= 0.

Note that by Lemma 21, f(ξ) gives the total utility of the optimal schedule for PUCm among all

schedules that have exactly ξ intervals. Let g(ξ) denote the total utility of the optimal schedule

for PEFm , among all schedules that have exactly ξ intervals. Clearly, f(ξ) ≥ g(ξ) for all ξ > 0.

Furthermore, f(ξ) = g(ξ) for any ξ such that ξ mod n= 0. As f is increasing in ξ for ξ ≤m and

decreasing in ξ for ξ >m, we see that g is maximized for some ξ ∈ [m− (m mod n),m+ n− (m

mod n)]. Denote this maximizer as mEF , and let πEF be an optimal envy-free schedule for PEFm for

which |I(πEF )|=mEF . We consider two cases: (i) m− (m mod n)≤mEF <m+ n− (m mod n)

and (ii) mEF =m+n− (m mod n).

(i) If m− (m mod n)≤mEF <m+n− (m mod n), by the pigeonhole principle, there must be

some πEFi such that |I(πEFi )| ≤ bm/nc. As the utility of each interval is at most τ
n

, and the

schedule is envy-free, we must have
∑

i∈[n] ui(π
EF ) ≤ n τ

n
bm/nc = m− (m mod n) τ

n
(i.e., if

some agent has at most bm/nc intervals, then by envy-freeness no agent can have more than

that).

(ii) If mEF =m+ n− (m mod n), then mEF ≥m+ 1 since m mod n 6= 0. Therefore, as f(ξ) is

decreasing in ξ for ξ >m,

f(mEF )≤ f(m+ 1) =m−n<m− (m mod n).

It follows that OPT (PEFm )≤ (m−(m mod n))τ

n
. As we can allocate each agent bm/nc intervals each

of length τ
n

, it holds that OPT (PEFm ) ≥ (m−(m mod n))τ

n
; hence OPT (PEFm ) = (m−(m mod n))τ

n
. As

OPT (PUCm ) = mτ
n

, PoF(Pm) = m
m−(m mod n)

. �

Lemma 27. For any n > 0 and τ > 0, let u be as in Instance 5. For any integer 1 ≤m< n, let

Tm = 2τ(m− 1). Denote Pm = (n,u,Tm, τ,0) and let δ = Bounded-Cadence(Tm,τ)(u). Then for

all 1≤m<n, PoF(Pm) = Tm−(m−1)τ

Tm−(n−1)τ
.

Proof.

Similarly to the proof of Lemma 26, we can show that: (i) there exists an optimal schedule π

for PUCm such that |I(π)| = m and dk = τ for all Ik = (sk, dk) ∈ I(π); and (ii) the optimal envy-

free schedule consists of n intervals, each of duration (2m−n)τ

n
. Therefore, OPT (PUCm ) = mτ and

OPT (PEFm ) = (2m−n)τ (where 2m−n> 0 because Tm > (n− 1)τ). We conclude that

PoF(Pm) =
mτ

(2m−n)τ
=
Tm− (m− 1)τ

Tm− (n− 1)τ
,

as required. �
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Appendix M: Proof of Theorem 6

In order to prove Theorem 6, we require the following lemma, which is analogous to Lemma 11 for

the case β = 0.

Lemma 28. Let Pu = (n,u,∞, τ,0), and set δ = Cadenceτ (u). Set Ik = (sk, dk) with sk = (k −
1)(δ + τ) and dk = δ for all k ≥ 1. Then any π = (π1, . . . , πn) with I(π) = {Ik}k≥0 is an optimal

schedule for PUCu .

Proof. We momentarily relax the constraint that m must be integer and consider:

m∗ = arg max
m∈R>0

mu

(
T − (m− 1)τ

m

)
. (37)

The change of variables

d(m, T ) =
T − (m− 1)τ

m
and m(d, T ) =

T + τ

d+ τ
,

gives two equivalent forms of Problem (37):

max
m≥0

mu

(
T − (m− 1)τ

m

)
≡ (T + τ)max

d≥0

u(d)

d+ τ
.

Let

δ= (T + τ) arg max
d≥0

u(d)

d+ τ
,

and note that δ does not depend on T (since arg max is invariant under scaling). By the change of

variables, for any T > 0 the optimal solution to Problem (37) is

m∗(T ) =m(δ, T ) =
T + τ

δ+ τ
. (38)

Now, the optimal average utility in Problem (37) when we are restricted to integer m is upper

bounded by m∗(T )u(δ)

T
(this is the optimal average utility without the integrality constraint). Since

m∗(T ) δ+(m∗(T )−1)τ = T by assumption, it is immediate that a schedule with bm∗(T )c intervals

each of duration δ is feasible (where the resource is just left idle for any excess time). Hence,
bm∗(T )cu(δ)

T
is a lower bound on the optimal average utility when m is constrained to be integer.

By Eq. (38), we see that

lim
T→∞

[
m∗(T )u(δ)

T
− bm

∗(T )cu(δ)

T

]
= 0,

i.e., the upper and lower bounds match as T →∞. Taking the limit as T →∞, we see that the

optimal average utility is then

lim
T→∞

m∗(T )u(δ)

T
= lim

T→∞

T + τ

T

u(δ)

δ+ τ
=
u(δ)

δ+ τ
.

The schedule where all intervals have duration δ attains the optimal average utility, and is thus an

optimal schedule for PUCu . �
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Theorem 6. Let P = (n,U ,∞, τ,0), n ∈N≥1, τ > 0, and ψ = γ(U)

γ(U)+n−1
. Then PoF(P)≤ nψ. Fur-

thermore, for any n∈N≥1 and τ > 0, there exists a set of n utility functions U for which this bound

is tight.

Proof. For each i∈ [n], define Pi = (n,ui,∞, τ,0) and let δi =Cadence(ui). By Lemma 28,

there exists an optimal schedule πi for PUCi where all intervals have duration δi. We construct an

envy-free schedule from πi by assigning the intervals in a round robin fashion, and therefore

OPT
(
PEFi

)
=OPT

(
PUCi

)
. (39)

We can then bound OPT (PEF ) as follows:

OPT
(
PEF

)
≥max

i∈[n]

OPT (PEFi )

nψ
(40)

= max
i∈[n]

OPT (PUCi )

nψ
(41)

=
OPT (PUC)

nψ
, (42)

where Ineq. (40) is due to Lemma 15, Eq. (41) follows from Eq. (39), and Eq. (42) is due to

Corollary 3. �

Appendix N: Proof of Propositions

N.1. Proof of Proposition 1

Proposition 1. Fix n ∈ N≥2 and a utility function u. For β > 0 and τ > 0, let P(β,τ) =

(n,u,∞, τ, β). Then PoF(P(β,τ)) grows exponentially as a function of β and τ , i.e., PoF(P(β,τ)) =

eΘ(β+τ).

Proof. We prove the result for β; the proof for τ is similar and omitted. Fix n≥ 2, τ > 0,

and u. For β > 0, denote Pβ = (n,u,∞, τ, β). We show that PoF(Pβ) grows exponentially as a

function of β (i.e., that PoF(Pβ) = eΘ(β)). To establish this claim, we show that PoF(Pβ) = eO(β)

and PoF(Pβ) = eΩ(β).

(i) PoF(Pβ) = eO(β). Let uβ(t) :=
∫ t

0
e−β xυ(x)dx for all t≥ 0 for β > 0. Fix some β0 and let δ0 =

Cadence(β0,τ)(u) and ρ0 = e−β(δ0+τ). Set β ≥ β0, and let δ = Cadence(β,τ)(uβ) and ρ= e−β(δ+τ).

From Lemma 7 part (ii), δ = Cadence(β,τ)(uβ) is increasing in β for β ≥ 1/τ . Therefore δ ≥ δ0;

hence ρ≤ ρ0. From Corollary 1, (as γ(U) = 1, hence ψ= 1
n

), we then have

PoF(Pβ)≤ λ

nρn−λ
≤ 1

ρn
= eβ(δ+τ).
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(ii) PoF(Pβ) = eΩ(β). Consider the optimal envy-free schedule, and rearrange the agents by the

start time of the earliest interval allocated to them. As there are at least n− 1 switches before

the start of the first interval of agent n, and the maximum utility attainable from any schedule

that begins at time t is e−βtOPT (PUCβ ), agent n receives at most e−β(n−1)τOPT (PUCβ ). Because

the schedule is envy-free, no agent receives more utility than this, hence

PoF(Pβ)≥
OPT (PUCβ )

ne−β(n−1)τOPT (PUCβ )
=
eβ(n−1)τ

n
,

as required. �

N.2. Proof of Proposition 2

We require a preliminary result, Lemma 29, in which we establish a property of the discounted

reciprocal function Φf,β,τ .

Lemma 29. For any continuous and non-decreasing function f : R≥0 → R≥0, β > 0, τ > 0, and

p≥ 1,

f
(
Φp
f,β,τ (t)

)
= e−β(

∑p
k=1

Φkf,β,τ (t)+pτ)f(t), ∀t≥ 0.

Proof. The proof is by induction. For the base case, p= 1, note that f (y) = e−β(y+τ)f(t) for

y= Φf,β,τ (t) by Definition 4; therefore

f (Φf,β,τ (t)) = e−β(Φf,β,τ (t)+τ)f(t). (43)

For the induction step, assume that f
(
Φp−1
f,β,τ (t)

)
= e−β(

∑p−1
k=1

Φkf,β,τ (t)+(p−1)τ)f(t) for all x≥ 0. Then

f
(
Φp
f,β,τ (t)

)
= f

(
Φf,β,τ

(
Φp−1
f,β,τ (t)

))
(44)

= e−β(Φf,β,τ(Φ
p−1
f,β,τ

(t))+τ)f
(
Φp−1
f,β,τ (t)

)
(45)

= e−β(Φ
p
f,β,τ

(t)+τ)f
(
Φp−1
f,β,τ (t)

)
= e−β(Φ

p
f,β,τ

(t)+τ)e−β(
∑p−1
k=1

Φkf,β,τ (t)+(p−1)τ)f(t) (46)

= e−β(
∑p
k=1

Φkf,β,τ (t)+pτ)f(t),

where Eq. (44) is due to Eq. (4), Eq. (45) is due to the base case (Eq. (43)), and Eq. (46) is due

to the induction hypothesis. �

Proposition 2. For any τ > 0, β > 0, and λ ∈ N≥1, there exists a family of instances {Pn}∞n=λ

where Pn = (n,u,∞, τ, β) such that for n = λ, PoF(Pn) = 1, and for n > λ, the price of fairness

grows exponentially in n, i.e., PoF(Pn) = Ω(2n).
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Proof. To prove the proposition, we use Instance 3. Recall that this instance is a special

case of Instance 2, which we used to prove Lemma 20. The case n= λ is immediate from Lemma 20

(part (iv)), as nψn = 1. For n> λ,

PoF(Pn) =
ψnu(δ)

(1− ρ)u
(
Φn−λ
u,β,τ (δ)

) (47)

=
ψnu(δ)

(1− ρ)e−β(
∑n−λ
k=1

Φk
u,β,τ

(x)+(n−λ)τ)u(δ)
(48)

=ψnλe
β(
∑n−λ
k=1

Φku,β,τ (x)+(n−λ)τ),

where ρ= λ−1
λ

, Eq. (47) is due to Lemma 20, and Eq. (48) is due to Lemma 29. It is immediate

that this expression grows exponentially in n due to the term nτ in the exponent and the fact that∑n−λ
k=1 Φk

u,β,τ (x) is always non-negative. �

N.3. Proof of Proposition 3

Proposition 3. Let Pu = (n,u,∞, τ, β), n ∈N≥1, τ > 0, β ≥ 0, for arbitrary u. Let γ ∈R≥1, and

let P = (n,U ,∞, τ, β), where U = {u1, . . . , un}, u1 = u, and ui satisfies u(t)

γ
≤ ui(t) ≤ u(t) for all

i∈ [2, n] and t≥ 0. Then

PoF(P)≤min{γ,n} ·PoF(Pu).

Proof. First, it is clear that OPT (PUCu ) = OPT (PUC) by choice of U . Since γ(U) ≤ γ,

Lemma 15 gives the bound

OPT
(
PEF

)
≥
(
γ(U) +n− 1

nγ(U)

)
OPT

(
PEFu

)
.

Therefore,

PoF(P)≤ nγ(U)

γ(U) +n− 1
PoF(Pu)≤ nγ

γ+n− 1
PoF(Pu) .

Finally, it is straightforward to verify that nγ
γ+n−1

≤min{γ,n} for γ ≥ 1 and n≥ 1. �

N.4. Proof of Proposition 4

We require a preliminary result, Lemma 30, in which we compute the cadence for Instance 1.

Lemma 30. Let β, τ , and n be as in Instance 1. Let ux be defined as in Instance 1. Then

Cadence(β,τ)(ux) = 1 for every x∈ [0.5,1].

Proof. Let g(t) = ux(t)

1−e−β(t+τ) . Taking the derivative for t∈ [0,1] gives:

dg(t)

dt
=
xtx−1(1− e−β(t+τ))− txβe−β(t+τ)

(1− e−β(t+τ))
2 .

Simplifying the numerator and using β = 0.1, we get

xtx−1(1− e−β(t+τ))− txβe−β(t+τ) = xtx−1− e−0.1(t+1)(xtx−1 + 0.1tx).
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We want to determine the sign of xtx−1− e−0.1(t+1)(xtx−1 + 0.1tx), so we first factor

xtx−1− e−0.1(t+1)(xtx−1 + 0.1tx) = tx−1
(
x− e−0.1(t+1)(x+ 0.1t)

)
.

The function tx−1 is nonnegative for all t∈ [0,1], so we only need to check the sign of

x− e−0.1(t+1)(x+ 0.1t) =(1− e−0.1(t+1))x− (0.1)t e−0.1(t+1)

≥(1− e−0.1(t+1))(0.5)− (0.1)t e−0.1(t+1)

=0.5− e−0.1(t+1) (0.5 + (0.1)t) ,

where the inequality follows because 1− e−0.1(t+1) ≥ 0 for all t ∈ [0,1]. Taking the derivative, we

can see that the function e−0.1(t+1) (0.5 + (0.1)t) is increasing in t for all t∈ [0,1], so

0.5− e−0.1(t+1) (0.5 + (0.1)t)≥ 0.5− 0.6e−0.2 > 0.

We conclude that x− e−0.1(t+1)(x+ 0.1t)> 0 for all x ∈ [0.5,1] and t ∈ [0,1]. It follows that g(t) is

increasing for all t∈ [0,1]. As g(t) is decreasing for t > 1, g(t) is maximized at t= 1. �

Proposition 4. Let β, τ , and n be as in Instance 1. Then for every x,x′ ∈ [0.5,1] such that x< x′,

it holds that PoF(Px)<PoF(Px′).

Proof. By Lemma 30, for any x∈ [0.5,1], Cadence(β,τ)(ux) = 1 and so

OPT (PUC
x ) =

ux(1)

1− e−β(τ+1)
= 4ux(1) = 4.

Similarly to the proof of Lemma 17 we can show that OPT (PEF
x ) = nux

(
Φn−λ
ux,β,τ

(1)
)
, and so

PoF(Px) =
4

nux
(
Φn−λ
ux,β,τ

(1)
)

=
4

ne−β(
∑n−λ
k=1

Φk
ux,β,τ

(x)+pτ)ux(1)
, (49)

where Eq. (49) is due to Lemma 29. Then,

PoF(Px)
PoF(Px′)

=
e
−β
(∑n−λ

k=1
Φkux′ ,β,τ

(1)+pτ

)

e−β(
∑n−λ
k=1

Φk
ux,β,τ

(1)+pτ)
.

It is easy to verify that ux and ux′ satisfy Lemma 9 for c= 1. Therefore, for every p≥ 1, Φp
ux,β,τ

(1)≤

Φp
ux′ ,β,τ

(1), and so PoF(Px)

PoF(Px′ )
≤ 1. �
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N.5. Proof of Proposition 5

Proposition 5. For any τ > 0, T <∞, and utility function u, let Pn = (n,u,T, τ,0) for n∈N≥2.

There exists some m < T
τ

+ 1 such that PoF(Pn) ≤ 2 if n < m, PoF(Pn) =∞ if n ≥ T
τ

+ 1, and

PoF(Pn) is increasing and convex (in the discrete sense) in n if m≤ n< T
τ

+ 1.

Proof. Let m be the number of intervals in the optimal schedule for PUCn (note that the

number of intervals in the optimal schedule for PUCn is independent of n by Lemma 23). From

Theorem 5, if n≤m, then

PoF(Pn)≤ m

m− (m mod n)
.

If 0<n≤ m
2

, then
m

m− (m mod n)
≤ m

m−n
≤ m

m− m
2

= 2.

If m
2
<n≤m, then

m

m− (m mod n)
=
m

n
≤ 2.

If m ≤ n < T
τ

+ 1, let δ = Bounded-Cadence(T,τ)(u). Then OPT (PUCn ) = mu(δ) and

OPT (PEFn ) = nu
(
T−(n−1)τ

n

)
. Set

f(n) =
OPT (PUCn )

OPT (PEFn )
=

mu(δ)

nu
(
T−(n−1)τ

n

) ,
which is the price of fairness for n agents.

Define functions g and h by g(x) = xu
(
T−(x−1)τ

x

)
and h(x) = mu(δ)/x, respectively. Then,

f = h◦g is strictly convex since it is the composition of the strictly convex and decreasing function

h and the strictly concave function g (on the domain where g is positive). By strict convexity of

f , we have
1

2
f(n+ 1) +

1

2
f(n− 1)> f

(
1

2
(n+ 1) +

1

2
(n− 1)

)
= f(n),

which shows that PoF(Pn+1)−PoF(Pn)>PoF(Pn)−PoF(Pn−1). For n=m, PoF(Pn) = 1. As the

price of fairness cannot be less than 1 and PoF(Pn) is convex on [m, T
τ

+ 1), it must be increasing

on this interval. �

N.6. Proof of Proposition 6

Proposition 6. For any utility function u, the set of instances {Pn,τ,T = (n,u,T, τ,0), n∈N>0,0≤

τ ≤ T ≤∞} is recurrently optimal in τ and T and asymptotically recurrently optimal in n.

We prove each part separately. Proposition 7 (below) shows that Pn,τ,T is recurrently optimal

in τ ; Proposition 8 shows that Pn,τ,T is recurrently optimal in T ; and Proposition 7 shows that

Pn,τ,T is asymptotically recurrently optimal in n.
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N.6.1. Recurrent optimality in τ

Proposition 7. Fix n ∈N≥1, u, and T > 0, and define Pτ = (n,u,T, τ,0) for 0< τ < T . For any

τ ′ such that (n+ 1)Cadenceτ ′(u) +nτ ′ <T for which PoF(Pτ ′)> 1, there exists τ ′′ > τ ′ for which

PoF(Pτ ′′) = 1.

Proof. We first consider the optimal schedule for PUCτ for general 0< τ < T . As in the proof

of Theorem 6, we momentarily relax the constraint that m must be integer to obtain Problem (37)

for which there are two equivalent forms:

max
m≥0

mu

(
T − (m− 1)τ

m

)
≡ (T + τ)max

d≥0

u(d)

d+ τ
.

Next, let δ(τ) =Cadenceτ (u) (here we emphasize the dependence on τ) and let

m∗(τ) =
T + τ

δ(τ) + τ

be the optimal solution of Problem (37) (as a function of τ). The corresponding optimal solution

of the integer-constrained problem

max
m∈N>0

mu

(
T − (m− 1)τ

m

)
is then either bm∗(τ)c or dm∗(τ)e (the two integer neighbors of m∗(τ)) by concavity of m→

mu
(
T−(m−1)τ

m

)
. By Lemma 7, we recall that δ(τ) = Cadenceτ (u) is strictly increasing in τ . It

follows that m∗(τ) = T+τ
δ(τ)+τ

is strictly decreasing in τ .

For τ ′ as given, (n+ 1)Cadenceτ ′(u) +nτ ′ <T which is equivalent to

m∗(τ ′) =
T + τ ′

δ(τ ′) + τ ′
>n+ 1,

and PoF(Pτ ′)> 1 so m∗(τ ′) mod n 6= 0. Because m∗(τ) is strictly decreasing in τ , we can increase

from τ ′ to some τ ′′ where m∗(τ ′′) mod n = 0. In this case, we can allocate the intervals of the

optimal schedule equally, so that PoF(Pτ ′′) = 1. �

The restriction on τ ′ in Proposition 7 is because if m<n, it is not possible to obtain a price of

fairness of one in all but degenerate cases.

N.6.2. Recurrent optimality in T . Flexibility in the time horizon in either direction (i.e.,

even if we are only allowed to increase or decrease the time horizon relative to some sufficiently large

benchmark) allows us to guarantee that there is no loss in value due to the fairness constraint. We

note that the cadence appears in the proposition below through Cadenceτ (which does not depend

on T ), and not Bounded-Cadence(T,τ), therefore there is no additional implicit dependence on

T in the bound.
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Proposition 8. For any τ > 0 and utility function u, let δ = Cadenceτ (u). Fix n ∈ N≥2 and

define PT = (n,u,T, τ,0) for all T > 0. For all T ′ ≥ nδ+(n−1)τ , there exists T ∈ [T ′, T ′+n(δ+τ)]

such that PoF(PT ) = 1.

Proof. Fix n, τ , u, δ, and T ′ as in the proposition statement, and let k= d(T ′+ τ)/(δ+ τ)e.

If k mod n= 0, set m= k, otherwise (if k mod n > 0), set m= bk/n+ 1cn. Next, set T =mδ+

(m− 1)τ . In both cases, m∈R≥1, m mod n= 0, and T ∈ [T ′, T ′+n(δ+ τ)].

Let πT be the schedule such that I(πT ) = {Ik}mk=1 and Ik = ((k− 1)(δ + τ), δ) for k = 1, . . . ,m.

The average utility of agents for πT is

mu(δ)

mδ+ (m− 1)τ
=

(
mδ+mτ

mδ+ (m− 1)τ

)
mu(δ)

mδ+mτ
=

(
T + τ

T

)
u(δ)

δ+ τ
.

We show that πT maximizes the average utility, and hence also the total utility since T <∞.

From Lemma 23, the optimal schedule for PUCT consists of intervals all with the same duration

δ′ = Bounded-Cadence(T,τ)(u) > 0. Denote the number of intervals in the optimal schedule by

m′. The average utility of this schedule is

m′ u(δ′)

m′δ′+ (m′− 1)τ
=

(
m′ δ′+m′ τ

m′ δ′+ (m′− 1)τ

)
m′ u(δ′)

m′ δ′+m′ τ
=

(
T + τ

T

)
u(δ′)

δ′+ τ
.

As arg maxδ′>0
u(δ′)
δ′+τ = δ by the definition of Cadenceτ (u), πT is an optimal schedule for PUCT . Since

πT consists of m intervals and m mod n= 0, we can allocate the intervals of πT in a round-robin

fashion to get an envy-free schedule with the same total utility. As the envy-free schedule has the

same utility as the optimal schedule, PoF(PT ) = 1. �

N.6.3. Asymptotic Recurrent Optimality in n.

Proposition 9. Fix u, τ > 0, and T , let δ = Bounded-Cadence(T,τ) (u), and let m= T+τ
δ+τ

. For

any 1≤ n≤m, let Pn = (n,u,T, τ,0). For every i ∈ [1,m], there exists n ∈
[⌊

m
i+1

⌋
,
⌈
m
i

⌉]
such that

PoF(Pn)≤ m
m−i .

Proof. We define πUC to be the schedule with m intervals all with duration δ, with total

utility mu(δ). Note that πUC is an optimal schedule for PUCn for any 1≤ n≤m. For any i∈ [1, m],

let m= ni+ r for some n ∈
[⌊

m
i+1

⌋
,
⌈
m
i

⌉]
and 0≤ r < i. To construct an envy-free schedule πEFn

for PEFn , we allocate ni ≤m intervals of πUC in a round-robin fashion, and leave the remaining

r intervals unassigned. The total utility of πEFn is then (m− r)u(δ) ≥ (m− i)u(δ) (since r < i).

Therefore, PoF(Pn)≤ mu(δ)

(m−i)u(δ)
= m

m−i . �
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