
Local Computation Mechanism Design

Avinatan Hassidim ∗ Yishay Mansour † Shai Vardi ‡

Abstract

We introduce the notion of local computation mechanism design - designing game the-
oretic mechanisms that run in polylogarithmic time and space. Local computation mech-
anisms reply to each query in polylogarithmic time and space, and the replies to different
queries are consistent with the same global feasible solution. When the mechanism employs
payments, the computation of the payments is also done in polylogarithmic time and space.
Furthermore, the mechanism needs to maintain incentive compatibility with respect to the
allocation and payments.

We present local computation mechanisms for two classical game-theoretical problems:
stable matching and job scheduling. For stable matching, some of our techniques may have
implications to the global (non-LCA) setting. Specifically, we show that when the men’s
preference lists are bounded, we can achieve an arbitrarily good approximation to the stable
matching within a fixed number of iterations of the Gale-Shapley algorithm.

1 Introduction

Assume that we would like to design an auction for millions of buyers and items. Alternatively,
there is a cloud of hundreds of thousands of computers on which we would like to schedule
several millions of jobs. In the not-so-distant past, these ideas would have been unthinkable, but
today, technological advances, especially the Internet, have led us to the point where they are
not only possible, but necessary. One can easily conceive a cloud computation with thousands
of selfish computers, each one wanting to minimize its work load. Alternatively, an ad-auction
for millions of businesses competing for advertising on millions of web sites does not appear to
be a far away dream. In cases like these, the data sets on which we need to work are so large,
that polynomial-time tractability may not be enough. Sometimes, even computing a solution
in linear time may be infeasible. Often, however, only parts of the solution to a problem are
required at each point in time. In such cases, we can use local computation algorithms (LCAs).

Local computation algorithms, which were introduced by [40], consider the scenario in which
we need to be able to respond to queries (regarding a feasible solution) quickly, but we never
need the entire solution at once. For example, in most auctions, this is a reasonable assumption.
When queried, we need to be able to tell each buyer which items she received and how much
to pay; for a given item we need to tell the seller to whom and when to ship the item. There
is no need to calculate the entire allocation and payment at any specific time or to commit the
entire solution to memory. Having an LCA to such an auction would mean that we can reply
to queries in polylogarithmic time and only require polylogarithmic space. Furthermore, if all
of the items and buyers are queried, combining the results will give us a complete solution that
meets our requirements.
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The field of algorithmic mechanism design is an area at the intersection of economic game
theory and algorithm design, whose objective is to design mechanisms in decentralized strategic
environments. These mechanisms need to take into account both the algorithmic efficiency
considerations and the selfish behavior of the participating agents.

In this paper we propose local computation mechanism design, which shares the motivations
of both local computation algorithms and algorithmic mechanism design. Our abstract model is
the following: We have a large data-set and a set of allowable queries. Our goal is to implement
each query in polylogarithmic time and space, while maintaining the incentives of participants.
It is worthwhile to give a few illustrative examples:

1. Consider the problem of assigning doctor interns to hospitals internships, the classical
motivation for stable matching. We would like to be able to compute, for each doctor,
her assigned hospital, without performing the entire global computation.

2. Consider a large auction. When an item arrives from the factory to be shipped, we need to
know to whom to send it and how much to charge. We never need the complete solution
to the auction.

3. Consider a large distributed data center that has to assign jobs to machines and elicits
from each machine its speed. When queried on a job, we would like to reply to which
machine it is assigned, and when queried regarding a machine, we would like to reply with
the set of jobs that need to run on it. Again, we would like the computation to be local,
without constructing a global solution, and still be able to ensure the machines have an
incentive to report their speeds truthfully.

A nice property of LCAs is that they are parallelizable; this property immediately carries over to
local computation mechanisms (LCMs). Therefore, in addition to providing query-access to a
solution that meets both the combinatorial and game-theoretic requirements of the mechanism,
an LCM can be run in parallel on a large number of machines to obtain a complete such solution.

The following are our main contributions. First, we formalize the notion of local computation
mechanism design. A mechanism is local if, for every query, it calculates an allocation (and a
payment) in polylogarithmic time and space. Furthermore, the allocation must be consistent
with some (single) global solution, and the payment must ensure truthfulness of the agents.
Second, we present local computation mechanisms for several interesting problems, where our
main result is an LCA for stable matching. Third, we use our techniques to show that in
the general case when the men’s lists have bounded length (even in cases that do not admit
an LCA), we can find arbitrarily good matchings1 (up to both additive and multiplicative
constants) by truncating the Gale-Shapley algorithm to a constant number of rounds.

We provide LCAs for the following problems:

Stable matching In the stable matching (or stable marriage) problem, introduced by [15],
we would like to find a stable perfect matching2 between a group of n men and a group of n
women. We focus on the model introduced by [19], in which the the women can have arbitrary
preferences over the men, and the men have preference lists of length k over the women, sampled
uniformly at random.

Our main result is a local computation algorithm that matches all but an arbitrarily small
fraction of the participants (this is often called an almost stable matching; see, e.g., [11, 23]).
Furthermore, limited to the matched participants, the matching is stable.

1See Section 3 for a formal discussion.
2A stable perfect matching is a perfect matching with no blocking pairs. A blocking pair is a man m and a

woman w such that m prefers w to the woman he is matched to, and w prefers m to the man she is matched to.
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Scheduling on related machines In the makespan minimization problem, we want to
schedule n jobs on m machines so as to minimize the maximal running time (makespan) of the
machines. This problem has many variations; we consider the scenario in which m identical
jobs need to be allocated among n related machines. The machines are strategic agents, whose
private information is their speed. We show:

1. A local mechanism that is truthful in expectation for scheduling on related machines, that
provides an O(log log n)-approximation to the optimal makespan.

2. A local mechanism that is universally truthful for the restricted case (i.e., when each job
can run on one of at most a constant number of predetermined machines), that provides
an O(log log n)-approximation to the optimal makespan.

We also show some subtle and surprising results on the truthfulness of our algorithms.

1.1 Related Work

Local Computation Algorithms: [40], showed how to transform distributed algorithms to LCAs,
and gave LCAs for several problems, including maximal independent set and hypergraph 2-
coloring. [1], expanded the work of [40] and gave better space bounds for maximal independent
set and hypergraph 2-coloring, using query trees. Query trees were introduced in the local
setting by [29]: a random permutation of the vertices is generated, and a sequential algorithm
is simulated on this order. The query tree represents the dependence of each query on the
results of previous queries. [29] showed that if the graph has a bounded degree, the query tree
has a constant expected size. [1] showed that the query tree has polylogarithmic size with high
probalility, and that the space required by the algorithm can be reduced by using a random seed
to generate the ordering. [24], showed that the size of the query tree can be bounded, with high
probability, by O(log n), and showed how it is possible to transform many on-line algorithms
to LCAs. Using this technique, they showed LCAs for maximal matching and several machine
scheduling problems. [34] extended these results to a wider family of graphs, and obtained
better time and space bounds. [25], showed an LCA that finds a (1− ε)-approximation to the
maximum matching.

Mechanism Design: Because we look at two very different game-theoretic settings, we provide a
short subsection dedicated to related work pertaining to each topic at the start of the relevant
sections.

2 Model and Preliminaries

We assume the standard uniform-cost RAM model, in which the word size is O(log n) bits,
where n is the input size, and it takes O(1) to read and perform simple words operations. We
denote the set of integers {1, 2, . . . , n} by [n].

2.1 Local Computation Algorithms

We use the following model of local computation algorithms (LCAs). A (t(n), s(n), δ(n))-local
computation algorithm A for a computational problem is a (possibly randomized) algorithm
that receives an input of size n, and a query x. Algorithm A replies to query x in time t(n)
and uses at most s(n) memory, with probability at least 1− δ(n). Furthermore, the replies to
all of the possible queries are consistent with a single feasible solution to the problem. That
is, the algorithm always replies correctly, but there is a δ(n) probability that the time and/or
space bounds will be violated.
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Remark 2.1. The model we use is a generalization of the model introduced by [40]. Our model
differs from theirs in that their model requires that the LCA always obeys the time and space
bounds, and returns an error with some probability. It is easy to see that any algorithm that
conforms to our model can be modified to conform to the model of [40] by forcing it to return an
error if the time or space bound is violated (the other direction does not necessarily hold). Note
however, that using this translation, a truthful mechanism in our model would not necessarily
translate to a truthful mechanism in their model.

2.2 Mechanism Design

We use the standard notation of game theoretic mechanisms. There is a set I of n rational
agents and a set J of m items. In some settings, e.g., the stable marriage setting, there are no
objects, only rational agents. Each agent i ∈ I has a valuation function vi that maps subsets
S ⊆ J of the items to non-negative numbers. The utilities of the agents are quasi-linear, namely,
when agent i receives subset S of items and pays p, her utility is ui(S, p) = vi(S) − p. Agents
are rational in the sense that they select actions to maximize their utility. We would like to
allocate items to agents (or possibly agents to other agents), in order to meet global goal, e.g.,
maximize the sum of the valuations of allocated objects (see, e.g., [30]).

A mechanism with payments M = (A,P) is composed of an allocation function A, which
allocates items to agents, and a payment scheme P, which assigns each agent a payment. A
mechanism without payments consists only of an allocation function. Agents report their bids
to the mechanism. Given the bids b = (b1, . . . , bn), the mechanism allocates the item subset
Ai(b) ⊆ J to agent i, and, if the mechanism is with payments, charges her Pi(b); the utility of
agent i is ui(b) = vi(Ai(b))− Pi(b).

A randomized mechanism is universally truthful if for every agent i, for every random choice
of the mechanism, reporting her true private valuation maximizes her utility. A randomized
mechanism is truthful in expectation, if for every agent i, reporting her true private valuation
maximizes her expected utility. That is, for all agents i, any bids b−i and bi, E[ui(vi, b−i)] ≥
E[ui(bi, b−i)].

We say that an allocation function A admits a truthful payment scheme if there exists a
payment scheme P such that the mechanism M = (A,P) is truthful.

A mechanism M = (A,P) fulfills voluntary participation if, when an agent bids truthfully,
her utility is always on-negative, regardless of the other agents’ bids, i.e., for all agents i and
bids b−i, ui(vi, b−i) ≥ 0 .

2.3 Local Computation Mechanisms

Definition 2.2 (Mechanisms without payments). We say that a mechanismM is (t(n), s(n), δ(n))-
local if its allocation function is computed by a (t(n), s(n), δ(n))-local computation algorithm.

Definition 2.3 (Mechanisms with payments). We say that a mechanism M = (A,P) is
(t(n), s(n), δ(n))-local if both the allocation function A and the payment scheme P are com-
puted by (t(n), s(n), δ(n))-local computation algorithms.

In other words, given a query x, A computes an allocation and P computes a payment,
and both run in time t(n) and space s(n) with probability at least 1− δ(n). Furthermore, the
replies of A to all of the queries are consistent with a single feasible allocation.

A truthful local mechanism M = (A,P) is a local mechanism that is also truthful. Namely,
each agent’s dominant bid is her true valuation, regardless of the fact that the mechanism is
local.
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3 Stable Matching

In the stable matching problem, we are given a set of men and a set of women. The men have
preferences over the women and the women over the men. The goal is to compute a matching
H that is stable; that is, there is no man and woman who prefer each other to their partner in
H. We formalize this below, following a summary of related work.

3.1 Related Work

Stable matching has been at the center of game-theoretic research since the seminal paper of [15]
(see, e.g., [35] for an introduction and a summary of many important results). [37] examined
the scenario in which the preference lists are of bounded length; in most real-life scenarios,
this is indeed the case. For example, a medical student will not submit a preference list for
internship over all of the hospitals in the United States, but only a short list. We examine
the variant in which each man m ∈ M is interested in at most k women, (and prefers to be
unmatched than to be matched to anyone not on their list; cf. [36]). We limit our attention to
the setting in which the men’s preferences are assumed to be uniformly distributed; cf. [19, 21].

The Gale-Shapley algorithm results in a stable matching regardless of the preferences (see,
e.g., [38]); however, its running time is Ω(n2). Indeed this is a lower bound on any algorithm that
finds a stable matching (under full preference lists) [28]. Furthermore, it is known that a linear
number of iterations of the Gale-Shapley algorithm is necessary to attain stability [17]. One
direction taken to obtain sub-linear running time is executing parallel computation on instances
with short preference lists. [12] proposed one such algorithm for stable matching. Unfortunately,
it does not appear possible to convert their algorithm to an LCA, as they require m4 processors,
and the running time is O(

√
m log3 n), where m is the sum of the preference list lengths. In

some cases, matchings that are “almost” stable may be acceptable (see, e.g., [11, 39]). There are
several ways of defining what it means for a matching to be almost stable (see e.g., [11]). One
of the better accepted notions (e.g., [14, 32, 39]) is to count the number of blocking pairs3 - the
fewer the blocking pairs, the more stable the matching. Several experimental works on parallel
algorithms for the stable matching problem provide evidence that after a constant number of
rounds, the number of blocking pairs can be made arbitrarily small. (e.g., [42, 33, 23]). [14]
showed that in the special case when the lengths of both the men’s and women’s preference lists
are bounded by a constant, there exists a distributed version of the Gale-Shapley algorithm,
which can be run for a constant number of rounds and finds an almost stable matching.

The Gale-Shapley algorithm is known to be strategy-proof for the men but not for the
women (e.g., [26]). [19] showed that in the setting above (and also for a more general setting),
the expected number of people with more than one stable spouse is vanishingly small, and with
probability 1− o(1), truth-telling is a dominant strategy if the other players are truthful.

3.2 Model and Main Result

We use a graph-theoretic characterization of the stable matching problem (see, e.g., [13, 14]). An
instance of the stable marriage problem is represented by a bipartite graph G = (M ∪W,E),
where M represents the set of men, and W the set of women. We make the conventional
assumption that |M | = |W | = n. Each man has a preference list over the women that he
is connected to, and each woman has a preference list over the men she is connected to. A
matching H ⊆ E is a set of vertex-disjoint edges. An edge e is said to be matched if e ∈ H. A
vertex v is matched if there is some u such that e = (u, v) is matched. An edge (u, v) ∈ E \H
is unstable if it holds that (1) u is unmatched or prefers v over its match in H, and (2) v
is unmatched or prefers u over its match in H. (An unstable edge is often referred to as a

3A blocking pair is a man and a woman who both prefer to be paired with each other than with their current
partner.
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blocking pair). A matching H is stable if there are no unstable edges. The stable matching
problem where each man has a degree of k and his adjacent edges are chosen uniformly at
random is called k-uniform. Note that in this case, the women’s preference list lengths are
binomial random variables whose value is determined by the random choices of the men, and
can therefore have any length in [n].

The Gale-Shapley algorithm finds a stable matching in the k-uniform setting (e.g., [16]). To
ensure the locality of our algorithm, we allow our mechanism to find an almost stable matching.
To do this, we allow our mechanism to ”disqualify” men, in which case they remain unmatched,
but are unable to contest the matching (the number of disqualified men is exactly the number
of blocking pairs). We try to keep the number of disqualified men to a minimum. Our main
result is the following.

Theorem 3.1. Let A = (M,W,P ) be a stable matching problem, |M | = |W | = n, in the
k-uniform setting. For any ε > 0, there is an (O(log n), O(log n), 1/n)-local computation mech-
anism for A that finds a matching with at most εn disqualified men and in which at most 2n

k +εn
of the men remain unmatched.

We begin by describing a non-local algorithm, AbridgedGS, and then show how to simulate
it locally by a local algorithm, LocalAGS.

3.3 AbridgedGS

Let AbridgedGS be the Gale-Shapley men’s courtship algorithm, where the algorithm is
stopped after ` rounds, and the men rejected on that round are left unmatched. That is, in
each round, each unassigned man approaches to the highest ranked woman that has not (yet)
rejected him. Each woman then tentatively accepts the man she prefers out of the men who
approached her, and rejects the rest. This continues until the `th round, and the men who were
rejected on the `th round are left unmatched; we say that these men are disqualified. Note that
the set of disqualified men may be a strict subset of the set of unmatched men: men who were
rejected k times before the `th round are unmatched as well. We simulate AbridgedGS on
k-uniform stable matching problems to obtain the following LCA.

3.4 LocalAGS - an LCA Implementation of AbridgedGS

Define the distance between two people to be the length of the shortest path between them in
the graph. Define the d-neighborhood of a person v to be everyone at a distance at most d from
v, denoted Nd(v)

Assume that we are queried on a specific man, m1. We simulate AbridgedGS locally as
follows: Choose some constant `, whose exact value will be determined later. For each man
in the 2`-neighborhood of m1, (i.e., for all mi such that mi ∈ N2`(m1)), we simulate round 1
of AbridgedGS. That is, each one approaches his preferred woman, and is either tentatively
accepted or rejected . Then, for each man mi ∈ N2`−2(m1), we simulate round 2. And so on,
until for mi ∈ N2(m1), (that is, m1 and his closest male neighbors), we simulate round `. We
return the woman to whom m1 is paired, “unassigned” if he was rejected by k women, and
“disqualified” if he was rejected by a woman in round `. We denote this algorithm LocalAGS.

In order to prove Theorem 3.1, we need to prove several things: that LocalAGS correctly
simulates AbridgedGS (Subsection 3.5); that its running time and space are bounded by
O(log n) (Subsection 3.6); and that “not too many” men are left unmatched or disqualified
(Subsection 3.7).

3.5 Correctness of LocalAGS

The following claim shows that the steps executed by LocalAGS are sufficient to correctly
determine the output of AbridgedGS when queried on m1.
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Claim 3.2. For any two men, mi and mj, whose distance from each other is greater than 2`,
mi’s actions cannot affect mj if Algorithm AbridgedGS terminates after ` rounds.

Proof. The proof is by induction. For ` = 1, let w1 be mj ’s first choice. Only men for whom
w1 is their first choice can affect mj , and these are a subset of the men at distance 2 from mj .
For the inductive step, assume that the claim holds for ` − 1. Assume by contradiction that
there is a man mi whose actions can affect mj within ` rounds, who is at a distance of at least
2`+2 from mj . From the inductive claim, none of mi’s actions can affect any of mj ’s neighbors
within `−1 rounds. As their actions in round `−1 (or any previous round) will not be affected
by mi, and they are the only ones who can affect mj in round `, it follows that mi cannot affect
mj within ` rounds.

3.6 Space and Time Bounds of LocalAGS

The following lemma bounds the running time and space of LocalAGS.

Lemma 3.3. The running time and space of algorithm LocalAGS is O(log n) per query with
probability at least 1− 1

n2 .

Because LocalAGS simulates AbridgedGS for a constant number of rounds, the running
time and space required per query by LocalAGS is at most the number of rounds multiplied by
the size of the neighborhood on which we simulate AbridgedGS. The following claim therefore
implies Lemma 3.3:

Recall that Ni(v) is the set of people at distance at most i from v.

Claim 3.4. For sufficiently large n, for any integer i > 0, there exists a constant ci such
Pr[|Ni(v)| ≤ ci log n] ≥ 1− 1

n2 .

Proof. Let N i
v be the random variable representing the number of vertices in the i-neighborhood

of vertex v. As the degree of each woman v is distributed binomially, N 1
v ∼ B(n, k/n), it holds

that E[N 1
v ] = k. We prove by induction that Pr[N i

v ≤ ci(log n)] ≥ 1− i
n3 , where ci is a constant

that depends only on k and i.
For the base, i = 1, if v is a man, N 1

v = k. If v is a woman, we employ the Chernoff bound
with λ > 2e− 1:4 Pr[N 1

v > (1 + λ)k] < 2−kλ. Therefore, for c1 = 4 and n ≥ 2k,

Pr[N 1
v > c1 log n] ≤ 2−c1 logn+k <

2k

nc1
≤ 1

n3
,

Assuming that the claim holds for all integers smaller than i, we show that it holds for
i. If the outermost vertices of the neighborhood are men, then N i

v ≤ kN i−1
v and we can take

ci = kci−1. Otherwise, we use the law of total probability.

Pr[N i
v > ci log n] = Pr[N i

v > ci log n|N i−1
v ≤ ci−1 log n] Pr[N i−1

v ≤ ci−1 log n]

+ Pr[N i
v > ci log n|N i−1

v > ci−1 log n] Pr[N i−1
v > ci−1 log n]

≤Pr[N i
v > ci log n|N i−1

v ≤ ci−1 log n] + Pr[N i−1
v > ci−1 log n]

≤Pr[N i
v > ci log n|N i−1

v ≤ ci−1 log n] +
i− 1

n3
.

where the last inequality uses the inductive hypothesis. It remains to bound Pr[N i
v > ci log n|N i−1

v ≤
ci−1 log n].

The probability that the degree of any woman u is exactly z is at most

Pr[deg(u) = z] ≤
(
n

z

)(
k

n

)z
≤
(
ek

z

)z
,

4Substituting λ ≥ 2e−1 into the standard Chernoff bound Pr[X > (1+λ)µ] ≤
(

eλ

(1+λ)1+λ

)µ
gives this bound.
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using the inequality
(
n
i

)
≤
(
ne
i

)i
. Hence, for z ≥ e2k we have that Pr[deg(u) = z] ≤ e−z.

Because for any z, it holds that Pr[deg(u) = z] ≤ 1 = e0, for arbitrary z ≥ 0, it holds that
Pr[deg(u) = z] ≤ e−ẑ, where ẑ = max{0, z − e2k}.

We would like to bound the probability that N i
v is larger than ci log n when N i−1

v is less than
ci−1 log n. We define a new random variable N̂ i

v as follows. Let y ≤ ci−1 log n be the number
of nodes at distance i − 1 from v and let z = (z1, z2, . . . , zy) be their degrees. We define the
truncated degrees as ẑ = {ẑ1, ẑ2, . . . , ẑy} such that ẑj = max{0, zj − e2k} (informally, we ignore

the first e2k neighbors of each vertex). The value of N̂ i
v is the sum of the truncated degrees

at distance i − 1 from v, i.e., N̂ i
v =

∑y
i=1 ẑi. Clearly N i

v ≤ N̂ i
v + e2ky ≤ N̂ i

v + ci−1e
2k log n.

Therefore it is sufficient to bound N̂ i
v.

Let x̂ =
∑y

i=1 ẑi. The probability that the truncated degrees of the vertices at distance i−1

are exactly ẑ = (ẑ1, ẑ2, . . . , ẑy) is at most
∏y
i=1 e

−ẑi = e−x̂. There are
(
x̂+y
y

)
vectors ẑ that can

realize x̂ (the number of ways to partition ẑ into y groups). We bound Pr[N̂ i
v = x̂|N i−1

v ≤ y],
for x̂ ≥ 7y as follows:

Pr[N̂ i
v = x̂|N i−1

v ≤ y]

≤
(
x̂+ y

y

)
e−x̂

≤
(
e · (x̂+ x̂/7)

x̂/7

)x̂/7
e−x̂

= e−(1−(1+ln(8))/7)x̂

≤ e−x̂/2.

It follows that

Pr[N̂ i
v ≥ 7y|N i−1

v ≤ y] ≤
∞∑

x̂=7y

e−x̂/2 =
e−7y/2

1− e−1/2
≤ e−y ≤ 1/n3,

which follows since y ≤ ci−1 log n and ci−1 ≥ 3. Therefore for ci = (e2k + 7)ci−1 ≤ (16k)i we
have,

Pr[N i
v > ci log n] ≤ 1

n3
+
i− 1

n3
=

i

n3
.

Claim 3.4 implies that Algorithm LocalAGS makes O(log n) queries with probability at
least 1

n2 ; Lemma 3.3 follows.

3.7 Bounding the Number of Men Removed

In this section we prove that “not too many” men remain unmatched. There are two possible
reasons for a man to be unmatched by LocalAGS: (1) he had already been rejected k times
by round ` (hence he never reaches round `), or (2) he was rejected (and hence disqualified) on
round `. We upper the probability of both (Lemma 3.6 and Corollary 3.11, respectively), and
apply a union bound, to obtain the following result.

Lemma 3.5. For any ε > 0, setting ` = 2k
ε in Algorithm LocalAGS ensures that at most

2n
k + εn men remain unmatched with probability at least 1− 1

n2 .
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3.7.1 Removal due to short lists

We bound the number of unassigned women as a result of the fact that the lists are short,
noting that the number of unassigned women equals the number of unassigned men. This is
given by the following lemma.

Lemma 3.6. In the k-uniform setting, the Gale-Shapley algorithm results in at most 2n
k men

being unassigned, with probability at least 1− 1
n2 .

Before proving Lemma 3.6, we will require a few preliminaries. We use the principle of
deferred decisions: instead of “deciding” on the preference lists in advance, each man chooses
the (i+ 1)th woman on his list only if he is rejected by the ith - this is known to be equivalent
to the choices being made in advance (e.g., [20]).

Consider the following stochastic process: In each round t, the (randomized) assignment
function f t is given the matching of the previous round, Ht−1, and assigns each man m ∈M a
woman w ∈ W , such that if m was matched in Ht−1, he is assigned the same woman (i.e., if
(m,w) ∈ Ht−1, then f t(m) = w); if he is unmatched in Ht−1, he is assigned a woman uniformly
at random. Let St(w) be the set of men assigned woman w by f t, i.e., St(w) = {m : f t(m) = w}.
For every woman w such that St(w) 6= ∅, a single m ∈ St(w) is chosen arbitrarily to be w’s
match in Ht, i.e., (w,m) ∈ Ht. The process is intialized with H0 = ∅, and iterates for k rounds.

Remark 3.7. Note that a man can choose the same woman more than once. Compare this to
the case each man can approach each woman once: If a man approaches a woman he had already
approached, she must be matched, and hence in this case, the men have a lower probability of
approaching an unassigned woman. Therefore the number women that are unassigned at the
end of this process is an upper bound to the number of unassigned women in the system where
men can only approach each woman once.

Let Xt
j be the indicator variable which is 1 if woman j is unassigned after round t, i.e., there

does not exists a man m ∈ M such that (m,w) ∈ Ht. Let Xt =
∑n

j=1X
t
j be the number of

unassigned women after round t.

of Lemma 3.6. As the stochastic process described above ends at least as early as the Gale-
Shapley algorithm with short lists in the k-uniform setting (from Remark 3.7 and the fact that
it may be stopped prematurely), it suffices to prove that for any constant t,

Pr[Xt >
2n

t
] ≤ t

n3
.

The proof is by induction. The base of the induction, t = 1, is immediate. For the
inductive step, assume that after round t, Xt = n/µ (for some µ > 0). In round t + 1,
E[Xt+1|Xt = n

µ ] = n
µ(1 − 1/n)n/µ, because each unassigned man approaches any woman with

probability 1/n; hence, the probability that a specific woman is not approached by any man is
(1− 1/n)n/µ.

For the rest of the proof, assume that Xt ≤ 2n
t , and fix Xt to be some such value. We get

E[Xt+1|Xt ≤ 2n

t
] ≤ 2n

t
(1− 1/n)2n/t <

n

t/2 · e2/t
<

2n

t+ 2
, (1)

using ex > 1 + x.
It remains to show that Xt+1 is concentrated around its mean. To do so, we will define a

specific martingale and use the following version of Azuma’s inequality (see [2]).

Lemma 3.8. [Azuma’s Inequality] Let c = Y0, . . . , Yn be a martingale with |Yi+1 − Yi| ≤ 1 for
all 0 ≤ i ≤ n. Then

Pr[|Yn − c| > λ
√
n] < 2e−λ

2/2.
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Order the men arbitrarily, M = {1, 2, . . . n}. Let Mi be the set of the first i men in the
ordering: Mi = {1, 2, . . . i}. Fix some matching Ht. For some realization g of the assignment
function f t+1, define the following martingale

Y t+1
i (Ht, g) = E[Xt+1|Ht, f t+1(j) = g(j) for all j ∈Mi],

In other words, Y t+1
i (Ht, g) is the expected number of unassigned women at round t+ 1, given

that the matching at round t was Ht, where the expectation is taken over all realizations of
f t+1 that agree with g on the first i men. Note that Y t+1

0 (Ht, g) is the expected value of Xt+1

over all possible realizations of f t+1; that is, the expected number of unmatched women after
t+ 1 rounds. Y t+1

n (Ht, g) is simply the number of unmatched women after t+ 1 rounds when
the allocation function is g. Xt+1 satisfies the Lipschitz condition, because if two realizations
of f t+1, say f ′ and f ′′, only differ on the allocation of a single man,

∣∣Xt+1|f ′ −Xt+1|f ′′
∣∣ ≤ 1

(where Xt+1|f denotes the realization of Xt+1 given that f is the realization of f t+1). Therefore,
(see [2]),

|Y t+1
i+1 (Ht, g)− Y t+1

i (Ht, g)| ≤ 1.

We can therefore apply Lemma 3.8 (Azuma’s inequality):

Pr[|Xt+1 − E[Xt+1]| > λ
√
n] < 2e−λ

2/2.

Setting λ = 2
√
n

(t+1)(t+2) , we have that

Pr

[
|Xt+1 − E[Xt+1]| > 2n

(t+ 1)(t+ 2)

]
< 2e−n/(5t

4),

for t ≥ 2.
Therefore, since we assume that Xt ≤ 2n

t and hence, by Equation (1), E[Xt+1] < 2n
t+2 , it

holds that

Pr

[
Xt+1 >

2n

t+ 1
|Xt ≤ 2n

t

]
< 2e−n/(5t

4) <
1

n3
. (2)

By the inductive hypothesis

Pr

[
Xt >

2n

t

]
≤ t

n3
. (3)

Therefore, using Equations (2), and (3), we have

Pr

[
Xt+1 >

2n

t+ 1

]
= Pr

[
Xt+1 >

2n

t+ 1
|Xt ≤ 2n

t

]
Pr

[
Xt ≤ 2n

t

]
+ Pr

[
Xt+1 >

2n

t+ 1
|Xt >

2n

t

]
Pr

[
Xt >

2n

t

]
.

≤ t

n3
+

1

n3

=
t+ 1

n3
.

3.7.2 Removal due to the number of rounds being limited

Because we stop the LocalAGS algorithm after a constant (`) number of rounds, it is possible
that some men who “should have been” matched are disqualified because they were rejected by
their ith choice in round ` (i < k). We show that this number cannot be very large.

Let Rr denote the number of men rejected in round r ≥ 1.

10



Observation 3.9. Rr is monotone decreasing in r.

Lemma 3.10. The number of men rejected in round r is at most nk
r .

Proof. As each man can be rejected at most k times, the total number of rejections possible is
kn. The number of men who can be rejected in round r is at most

Rr ≤ kn−
r−1∑
j=1

Rj

⇒Rr ≤ kn− (r − 1)Rr (4)

⇒Rr ≤ n
k

r
.

Where Inequality (4) is due to monotonicity of Rr, i.e., Observation 3.9.

Corollary 3.11. For any ε > 0, setting r = k
ε ensures that the number of men rejected in

round r is at most εn.

4 Some general properties of the Gale-Shapley algorithm

We use the results and ideas of Section 3 to prove some interesting features of the (general)
Gale-Shapley stable matching algorithm, when the mens’ lists are of length at most k. (These
results immediately extend to our local version of the algorithm, LocalAGS.) Note that the
proof of Lemma 3.10 makes no assumption on how the men’s selection is made, and therefore,
Lemma 3.10 implies that as long as each man’s list is bounded by k, if we run the Gale-Shapley
for ` rounds, at most nk

` men will be rejected in that round. This immediately gives us an
additive approximation bound for the algorithm if we stop after ` rounds:

Corollary 4.1 (to Lemma 3.10). Assume that the output of the Gale-Shapley algorithm on a
stable matching problem, where the preference lists of the men are of length at most k, is a
matching of size M∗. Then, stopping the Gale Shapley algorithm after ` rounds will result in a
matching of size at least M∗ − nk

` .

We would like to also provide a multiplicative bound. Again, we assume that the mens’
list length is bounded by k, but make no other assumptions. For each round i, let Mi be the
size of the current matching; let Di be the number of men who have already approached all k
women on their list and have been rejected by all of them; let Ci be the number of men who
were rejected by women in round i, but have approached fewer than k women so far; as before,
let Ri be the number of men rejected in round i. Denote the size of the matching returned by
the Gale-Shapley algorithm (if it were to run to completion) by M∗.

Claim 4.2. Ck+1 ≤ kM∗.

Proof. Note that Ri = Ci + Di −Di−1. For i < k,Di = 0. As Mi is monotonically increasing
in i, ∀i ≤ k,Ri ≥ n−M∗.

k∑
i=1

Ri ≥ kn− kM∗.

Hence,

Ck+1 ≤ kn−
k∑
i=1

Ri ≤ kM∗.

11



Corollary 4.3. For every ε > 0, there exists a constant ` > 0 such that C` ≤ εM∗.

Proof. Denote the maximum number of total rejections possible from round i onwards by Li.
Clearly,

Li ≤ k(Mi + Ci) ≤ k(M∗ + Ci).

For all i such that Ci ≥ εM∗, we have

Li ≤
(

1 +
1

ε

)
kCi.

Therefore, from Claim 4.2,

Lk+1 ≤
(

1 +
1

ε

)
k2M∗.

Putting everything together, we have,

Li+1 ≤ Li − Ci

⇒ Li+1 ≤ Li

(
1− 1

k(1 + 1
ε )

)

⇒ Lk+i+1 ≤ Lk+1

(
1− 1

k(1 + 1
ε )

)i

≤
(

1 +
1

ε

)
k2M∗

(
1− 1

k(1 + 1
ε )

)i
≤ 2k2M∗e

− i

k(1+1
ε ) .

Taking i = k(1 + 1
ε ) log 2k2

ε gives Ck+i+1 ≤ Lk+i+1 ≤ εM∗.

This gives us,

Theorem 4.4. Consider a stable matching problem. Let the length of each man’s list be bounded
by k. Denote the size of the stable matching returned by the Gale-Shapley algorithm by M∗.
Then, if the process is stopped after O(kε log k

ε ) rounds, the matching returned is at most a
(1 + ε)-approximation to M∗, and has at most εM∗ unstable couples.

As a corollary to Theorem 4.4, when the men’s and women’s list lengths are both bounded
by a constant, there is an LCA that runs in constant time an provides a matching with at most
ε unstable edges that is a (1 + ε) approximation to the matching returned by the Gale-Shapley
algorithm.

Corollary 4.5. If both men and women have lists of length at most k, then for any ε there is
an (O(1), O(1), 0)-LCA for stable matching which returns a matching that is at most a (1 + ε)-
approximation to the matching returned by the Gale-Shapley algorithm, and with at most an
ε-fraction of the edges being unstable.

5 Local machine scheduling

5.1 Introduction and Related Work

Consider the following job scheduling problem. n identical jobs arrive online and need to be
allocated to m identical machines, with the objective of minimizing the makespan - the maximal
load on any machine. [5] proposed the following algorithm: each job chooses, uniformly at
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random, d machines, and allocates itself to the least loaded machine from its d choices. They
showed that the maximal load is Θ(n/m) + (1 + o(1)) ln lnm/ ln d. A large volume of work has
been devoted to variations on this problem, such as having weighted jobs [41]; and variations on
the algorithm, such as the non-uniform job placement strategies of [43]. Of particular relevance
to this work is the case of non-uniform machines: [8] showed that in this case the maximum
load can also be bounded by Θ(n/m) +O(ln lnm).

The classical off-line job scheduling problem has two main variations: (1) Related machines,
where each job i takes a certain amount time, ti, to complete, regardless of which machine it is
allocated, and (2) Unrelated machines, where each job i takes time ti,j to complete on machine
j. Both problems are known to be NP -hard. [18] showed a PTAS for scheduling on related
machines. [22], presented a 2-approximation algorithm for scheduling on unrelated machines
and showed that the optimal allocation is not approximable to within 3

2 − ε (unless P = NP ).
The problem of finding a truthful mechanism for scheduling (on unrelated machines) was in-
troduced by [31], who showed an m-approximation to the problem, and a lower bound of 2. [4]
were the first to tackle the related machine case; they showed a randomized 3-approximation
polynomial algorithm and a polynomial pricing scheme to derive a mechanism that is truth-
ful in expectation. Since then, much work has gone into finding mechanisms with improved
approximation ratios, until [10] settled the problem by showing a deterministic PTAS, and a
corresponding mechanism that is deterministically truthful.

5.2 The Model

We consider the following (off-line) job scheduling setting. There is a set I of m machines (or
“bins”) and a set J of n uniform jobs (or “balls”). Each machine i ∈ I has an associated
capacity ci (sometimes referred to as its “speed”). We assume that the capacities are positive
integers. Given that hi jobs are allocated to machine i, its load is `i = hi/ci, and hi is also
called the height of machine i. The utility of machine i is quasi-linear, namely, when it has load
`i and receives payment pi then its utility is ui(`i, pi) = pi − `i.

The makespan of an allocation is maxi{`i} = maxi{hi/ci}. In our setting, the players are
the machines and their private information is their true capacities. Each machine i submits
a bid bi (which represents its capacity). The mechanism designer would like to elicit from
the machines the true information about their capacities in order to be able to minimize the
makespan of the resulting allocation. We assume that the capacities of the machines cannot
depend on the number of machines or jobs in the system (i.e., that the bids of the machines
are independent of m or n), and hence are upper bounded by some constant. Although we feel
this is a reasonable assumption, in Remark 5.9, we show that in some cases we can relax it.

For any allocation algorithmA, and bid vector b, defineA(b) = (A1(b), . . . ,Aj(b), . . . ,An(b))
to be the allocation vector, which, when given b as an input, assigns each job j to a machine
i = Aj(b). When the bids b−i are fixed, we sometimes omit them from the notation for clarity.

Definition 5.1. (Monotonicity) A randomized allocation function A is monotone in expecta-
tion if for any machine i, and any bids b−i, the expected load of machine i, E[`i(bi, b−i)], is a
non-decreasing function of bi.
A randomized allocation function A is universally monotone if for any machine i, and any
bids b−i, the load of machine i, `i(bi, b−i), is a non-decreasing function of bi for any realization
of the randomization of the allocation function.

Given an allocation function A, we would like to provide a payment scheme P to ensure that
our mechanism M = (A,P) is truthful. It is known that a necessary and sufficient condition
is that the allocation function A is monotone ([27]; see also [4]).

Theorem 5.2. [27] The allocation algorithm A admits a payment scheme P such that the
mechanism M = (A,P) is truthful-in-expectation (universally truthful) if and only if A is
monotone in expectation (universally monotone).
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In this section, we consider two load balancing settings: The standard setting (cf. [8, 44])
is a slight variation on the basic power-of-d choices setting proposed in [5]. Let d ≥ 2 be
some integer. For each job j, the mechanism chooses a subset Ij ⊆ I, |Ij | = d of machines
that the job can be allocated to. The probability that machine i ∈ Ij is proportional to bi
(specifically, it is dbi∑

i bi
). In the restricted setting (cf. [6]), each job can be allocated to a subset

of at most d machines, where the subsets Ij are given as an input to the allocation algorithm.
The restricted setting models the case when the jobs have different requirements, and there is
only a small subset of machines that can run each job. We restrict our attention to the case
when the number jobs n = Θ(C) jobs where C is the total capacity of the machines. This is a
standard assumption, as it is considered to be the worst case scenario (see e.g., [5, 8, 44]), and
so a solution for this case implies that there is an equally good solution for all other cases as
well.

In both of these settings our results rely on a reduction to an on-line algorithm for the
problem. [24] and [34] showed that it is possible to transform certain on-line algorithms to
LCAs, for a restricted family of graphs (including graphs where the vertex degrees are bounded
by a constant or distributed binomially). The idea behind the reduction is simple: generate
a (pseudo-) random order on the vertices and simulate the on-line algorithm on this order.
In order to be able to generate this order consistently and “on the fly” whenever the LCA is
queried, we need to store a random seed of length O(log n) (where n is the number of vertices).
The pseudo-random order on the vertices guarantees that with high probability, the LCA will
need to query at most O(log n) vertices. This is summarized in the the following theorem,
which is a specialized version of a result of [34].

Theorem 5.3. (cf. [24, 34]) Consider a job scheduling problem for n jobs and Θ(n) machines.
For each job j, there is a constant-size subset of machines Ij, chosen uniformly at random, and
j cannot be allocated to any machine i /∈ Ij. For any on-line algorithm LB to the problem that
requires constant time per query, there exists an (O(log2 n), O(log2 n), 1/n)-local computation
algorithm that, when queried on a job, allocates it to a machine, such that the resulting allocation
is consistent with that of LB.

5.3 A Truthful in Expectation Mechanism for the Standard Setting

In the standard setting, each machine i has an integer capacity ci. One way of modeling this
is to regard the allocation field as consisting of

∑
i ci slots of size 1, where machine i “owns” ci

slots. Recall that a machine’s height is the number of jobs that are allocated to it; the load of
machine i is its height divided by ci. The virtual load of machine i is its height divided by its
bid bi. Given the bids b of the machines, let B =

∑n
i=1 bi. An allocation algorithm allocates

jobs to slots: when a job j is allocated to a specific slot, the machine that owns the slot receives
j. We provide the following simple on-line allocation algorithm ASLMS , which is modeled on
the algorithm presented in [8].

1. Choose for job j a subset Ij of d slots out of B, where each slot has equal probability. (Ij
may include different slots owned by the same machine.)

2. Given Ij , job j is allocated to the lowest slot (i.e., the one containing the fewest jobs) in
Ij (breaking ties uniformly at random). Slots are treated as being independent of their
machines. That is, it is possible that if a job chooses two slots a and b, which belong to
machines A and B, a has fewer jobs than b, but B has a higher (virtual) load than A.

Note: Although it may not be possible to compute B locally exactly, it has been shown in that
an approximate calculation suffices (e.g., [9, 44]); therefore, for simplicity, we assume that it is
possible to compute B locally.

Lemma 5.4. The randomized allocation algorithm ASLMS is monotone in expectation.
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Proof. Let B =
∑

i bi and B−i =
∑

i 6=i bi. Since all the slots are identical, by symmetry the
expected number of jobs allocated to each slot is exactly n/B. The expected height of machine
i is therefore

E[hi(bi)] =
bi

B−i + bi
n,

which is monotone increasing in bi (for bi, B−i ≥ 0).

From Theorem 5.2, we conclude:

Lemma 5.5. The randomized allocation function ASLMS admits a payment scheme PSLMS

such that the mechanism MSLMS = (ASLMS ,PSLMS) is truthful in expectation.

It is interesting to note that the above algorithm does not admit a universally truthful
mechanism. To show this, we prove a slightly stronger claim, which we then adapt to our
setting: the Greedy algorithm – in which each job chooses d machines at random, and is
allocated to the least loaded among them (post-placement)5, breaking ties arbitrarily – does
not admit a universally truthful mechanism.

Claim 5.6. Algorithm Greedy is not universally monotone.

Proof. Assume we have 4 machines: A, B, C, and D, with bids 4, 4, 8 and 1 respectively. The
first 2 jobs choose machines A and D (which we abbreviate to AD), the next 2 jobs choose BD,
and the next 6 jobs choose CD. After these 10 jobs, the heights of the machines are (2, 2, 6, 0)
(recall that the Greedy algorithm allocates according to the post-placement load). The 11th
job chooses AB, and the 12th job chooses AC. As ties are broken at random, assume machine
A receives job 11. Machine C then receives job 12, making the capacities (3, 2, 7, 0).

Now assume machine C bids 9, and the choices of the first 10 jobs and the 12th job remain
the same, but because C bid higher, now the 11th job chooses C instead of A (so job 11 chooses
BC). Now machine B receives the 11th job and machine A receives the 12th job, making the
capacities (3, 3, 6, 0). Machine C received less jobs although it bid more!

It is easy to adapt the above proof to Algorithm ASLMS : instead of choosing machines,
each job chooses 2 slots. So the first job will choose slot 1 of machine A and the only slot of
machine D; the second job will choose slot 2 of machine A and machine D’s slot; and so on.
This gives the following corollary.

Corollary 5.7. Algorithm ASLMS is not universally monotone.

By Theorem 5.3, the allocation functionASLMS can be transformed to a (O(log2 n), O(log2 n),
1/n) LCA. For clarity, we overload the notation, letting ASLMS represent both the on-line al-
location algorithm and its respective LCA, as it is easy to distinguish between them from
context. We would now like to show a payment scheme PSLMS such that the mechanism
MSLMS = (ASLMS , PSLMS) is a local mechanism. We need to show a payment scheme that
can be implemented as an LCA and guarantees truthfulness. We give a deterministic payment
scheme, that is similar to the payments schemes of [3] and [8]. We also comment on the possi-
bility of a randomized payment scheme when the bids can depend on the total capacity. The
randomized payment scheme is similar to that of [7].

Lemma 5.8. If the bids of the machines are bounded by a constant, there exists a deterministic
local payment scheme PSLMS such that the mechanism MSLMS = (ASLMS ,PSLMS) is truthful
in expectation.

5That is, the load is computed including the allocation of the arriving job. For example, if machine A has
capacity 4 and height 2 and machine B has capacity 16 and height 9, the job will go to machine B, as after
placing the job, the load on B would 10/16, compared to 3/4 on A.
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Proof. [4] showed that the following payment scheme makes for a truthful mechanism fulfilling
voluntary participation. For bid bi:

pi(bi, b−i) = bihi(bi, b−i) +

bi∑
0

hi(x, b−i)dx . (5)

As bi is bounded by a constant, we can execute ASLMS with all values of bi ∈ [0, bi], to compute
pi. This takes a constant number of executions of ASLMS .

Remark 5.9. If bi is not necessarily a constant, but the mechanism has access to the value B−i,
there is a randomized payment scheme that we can use. Equation (5) is the expected payment.
From symmetry, E(hi(B)) = bi

B , hence we can rewrite Equation (5) as

pi(bi, b−i) = n
b2i

B−i + bi
+ n

bi∑
x=0

x

B−i + x
.

Choose, uniformly at random, k ∈ [1, bi], and take the payment to be

n
b2i
B

+ nbi ·
k

B−i + k

This gives the correct expected payment, and takes O(1) time.

[8], showed that ASLMS provides an O(log logm) approximation to the optimal makespan.
Therefore, by Theorem 5.3, the LCA of ASLMS provides the same approximation ratio. Com-
bining Lemma 5.5, and Lemma 5.8, we state our main result for the standard setting:

Theorem 5.10. There exists an (O(log2 n), O(log2 n), 1/n)- local mechanism to scheduling
on related machines in the standard setting that is truthful in expectation, and provides an
O(log log n)-approximation to the makespan.

5.4 A Universally Truthful Mechanism for the Restricted Setting

In the restricted setting, each job can only be allocated to one of a set Ij ⊆ I of d machines.
As opposed to the standard setting, Ij is not selected by the mechanism, but is part of the
input. We assume that these sets are selected i.i.d. from all possible sets, and the probability
of machine i to be in Ij is proportional to its capacity ci. The first assumption is necessary
for bounding the running time, the second to guarantee the approximation ratio. The second
requirement can be relaxed slightly, (see e.g. [44]) but for clarity of the proofs, we will assume
that it holds exactly. Similarly to the previous subsection, we assume that the capacity of each
machine is bounded by a constant.

We define the (on-line) algorithm ARLMS for assigning jobs to machines as follows. Initially,
a permutation π of the machines is selected arbitrarily, for tie-breaking. Job t is assigned to the

machine i ∈ Ij for which the post-placement load, lpt+1
i (bi) = bh

t
i(bi)+1
bi
c is smallest, breaking

ties according to π. The following claim shows why it is necessary to take the floor of the load,
as the simple Greedy algorithm does not admit a universally truthful mechanism in this case.

Claim 5.11. The (unmodified) Greedy algorithm is not universally monotone in the restricted
case.

Proof. Assume we have 3 machines A,B,C, with bids (4, 8, 36) respectively, and a tie-breaking
permutation: A < B < C (jobs always prefer machine A to machines B and C, and machine
B to machine C). The allocation at time t is (1, 3, 18). The next job’s restricted set contains
machines A and B (which we abbreviate to AB), and the following two jobs’ sets are BC and
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AB respectively. The first job is allocated to A (since the post-placement loads on A and B
are 2/4 and 4/8 respectively, hence we use the tie-breaking rule). The second job is allocated
to B (4/8 < 19/36) and the third job to B (5/8 > 3/4). The heights of the machines are now
(2, 5, 18).

Now assume B declares its capacity to be 9, and assume that at time t, there is no difference
in the allocation (it is easy to verify that this is indeed possible). The loads at time t in this
case are: 1/4, 3/9, 18/36. The jobs’ choices are part of the input to the mechanism, so are
unaffected by the bids, and remain AB,BC,AB. The first job is allocated to B (2/4 > 4/9),
the second job to C (19/36 < 20/36 = 5/9), and the third job to A (2/4 < 5/9). The heights
of the machines are now (2, 4, 19). Thus, B receives jobs despite bidding higher.

Interestingly, although Greedy is not universally monotone, ARLMS is.

Theorem 5.12. For any permutation π of the machines and any job arrival order, the alloca-
tion function ARLMS is universally monotone increasing in the machines’ bids.

From the definition of universal monotonicity (Definition 5.1), it suffices to prove the fol-
lowing lemma:

Lemma 5.13. For any machine i, fixing b−i, for any b′i > bi, we have that hi(ARLMS(b′i, b−i))
≥ hi(ARLMS(bi, b−i)).

To prove Lemma 5.13, define Dt(k, b′i, bi) to be the difference in the number of jobs allocated
to machine k between ARLMS(b′i) and ARLMS(bi) up to and including the arrival of job t (which
we call time t). We abbreviate this to Dt(k) when b′i and bi are clear from the context. (If
machine k received less jobs, then Dt(k) is negative.) We say that machine k steals a job from
machine l at time t if AtRLMS(bi) = l and AtRLMS(b′i) = k. We will show that the only machine
for which Dt(k) can be positive at some time t is machine i, therefore, as

∑n
j=1D

t(j) = 0, we

have that Dt(i) can never be negative.

Proposition 5.14. For any machine i, fixing b−i, if b′i > bi then at all times t, for any machine
k 6= i, Dt(k) ≤ 0.

Informally, Proposition 5.14 says that if bin i claims its capacity is larger than it actually
is, no bin except for i can receive more balls. The following corollary follows immediately from
Proposition 5.14, and implies Lemma 5.13.

Corollary 5.15. For any machine i, fixing b−i, if b′i > bi then at all times t, Dt(i) ≥ 0.

Before proving Proposition 5.14, we first will make the following simple observation

Observation 5.16. For any machine k, if Dt(k) ≤ 0 then lptk(b
′
i) ≤ lptk(bi).

Proof. For k 6= i, as k’s bid is the same in both allocations, if it received less jobs by time t in
ARLMS(bi) then the observation follows. If k = i, the observation follows since b′i > bi.

We now prove Proposition 5.14:

of Proposition 5.14. The proof is by induction on t. At time t = 0, D0(k) = 0 for every k.
Assume the proposition is true for times t = 0, 1, . . . , τ − 1. We show it holds for t = τ , by

contradiction. Assume that we have a machine k 6= i such that Dτ (k) > 0. At time τ − 1, for
all k 6= i, by the induction hypothesis, it holds that Dτ−1(k) ≤ 0. The only way that Dτ (k) > 0
is if machine k has Dτ−1(k) = 0 and at time τ steals a job. Assume first that machine k steals
a job from machine l 6= i. This means that in ARLMS(bi), machine l received job τ , therefore

lpτl (bi) ≤ lpτk(bi). (6)

By Observation 5.16, lpτl (b′i) ≤ lpτl (bi), and so

17



lpτl (b′i) ≤ lpτl (bi) ≤ lpτk(bi) = lpτk(b′i).

If machine k steals job τ from machine l, then lpτk(b′i) ≤ lpτl (b′i). This is a contradiction to
Equation (6) because there cannot be an equality both here and in Equation (6), as the tie-
breaking permutation π is fixed. More precisely, if lpτl (b′i) = lpτl (bi) = lpτk(bi) = lpτk(b′i), then
job τ will be allocated to the same machine in bi and b′i, according to the permutation π.

Therefore, machine k must steal job τ from machine i, which gives us

lpτi (bi) ≤ lpτk(bi) = lpτk(b′i) ≤ lpτi (b′i). (7)

The first inequality is due to the fact that machine i receives job τ in ARLMS(bi). The equality
is due to the fact that Dτ−1(k) = 0, and the second inequality is because machine k receives
job τ in ARLMS(b′i). And so,

lpτi (bi) < lpτi (b′i), (8)

because one of the inequalities in Equation (7) must be strict, as the tie-breaking permutation
π is fixed.

Assume that the last time before τ that machine i stole a job is time ρ, and label by z the
machine that i stole from at that time. We have

lpρi (b
′
i) ≤ lpρz(b′i) ≤ lpρz(bi) ≤ lp

ρ
i (bi).

The first inequality is because machine i received job ρ in ARLMS(b′i). The middle inequality
is because Dρ(z) ≤ 0. The last inequality is because machine z received job ρ in ARLMS(bi).
Again, at least one inequality must be strict, giving

lpρi (b
′
i) < lpρi (bi),

which implies, for all α ≥ 0, ⌊
hρi (b

′
i) + α+ 1

b′i

⌋
≤
⌊
hρi (bi) + α

bi

⌋
, (9)

since b′i > bi ≥ 1.
Because job ρ was the last job that machine i stole, it received at least as many jobs between

ρ and τ in ARLMS(bi) as in ARLMS(b′i). Label the number of jobs i received between ρ and τ
(including ρ but excluding τ) in ARLMS(bi) by β and in ARLMS(b′i) by β∗.

Observation 5.17. β∗ ≤ β + 1.

Proof. Machine i received at least as many jobs in ARLMS(bi) as in ARLMS(b′i) after ρ. This
must be true because ρ was the last time machine i stole a job. However, machine i received
the job at time ρ in ARLMS(b′i) but not in ARLMS(bi), and so we cannot claim that β∗ ≤ β,
but only that β∗ ≤ β + 1.

Proof of Proposition 5.14 continued. From the definition of lp and equation (9), we get:

lpτi (b′i) =

⌊
hτi (b′i) + 1

b′i

⌋
=

⌊
hρi (b

′
i) + β∗ + 1

b′i

⌋
(10)

≤
⌊
hρi (b

′
i) + β + 2

b′i

⌋
(11)

≤
⌊
hρi (bi) + β + 1

bi

⌋
(12)

= lpτi (bi). (13)
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Equality (10) stems from the definition of β∗, Inequality (11) is due to Observation 5.17,
Inequality (12) is due to Equation (9), and Equality (13) is from the definition of β.

This is in contradiction to Equation (8), and therefore Dτ (k) ≤ 0. This concludes the proof
of the proposition.

Given that ARLMS is universally monotone, we can once again use the payment scheme of
[4] to obtain the following lemma.

Lemma 5.18. There exists a local payment scheme PRLMS such that the mechanism PRLMS =
(ARLMS ,PRLMS) is universally truthful.

It remains to bound the approximation ratio of our algorithm.

Lemma 5.19. The allocation algorithm ARLMS provides an O(log log n)-approximation to the
optimal allocation.

The proof is similar to the proof for the unmodified Greedy algorithm in the case of non-
uniform bins of [8]. We provide it in Appendix A for completeness.

Putting everything together gives our main result for this subsection.

Theorem 5.20. There exists an (O(log2 n), O(log2 n), 1/n)- local mechanism for scheduling on
related machines in the restricted setting that is universally truthful and gives an O(log log n)-
approximation to the makespan.

A Proof of Lemma 5.19

Lemma 5.19. The allocation algorithm ARLMS provides an O(log log n)-approximation to the
optimal allocation.

We prove the theorem for the case d = 2 (each job can be assigned to one of 2 machines).
The proof is easily extendable to d > 2. For the proof (not the algorithm), we regard each
machine i of capacity ci as having ci slots of capacity 1. Before presenting the proof we need
several definitions:

The load vector of an allocation of jobs to m machines is L = (`1, . . . , `m), where `i
is the load of machine i. The normalized load vector L̄ consists of the members of L in
non-increasing order (ties are broken arbitrarily). For the case of non-uniform machines of
capacities c1, . . . cm, and total capacity C =

∑m
i=1 ci, we define the slot-load vector S =

(h1,1, . . . h1,c1 , h2,1, . . . h2,c2 , . . . hn,1, . . . hn,cn), where if machine i is allocated r jobs, the first
r mod c slots will have dr/ce jobs, and the remaining slots will have br/cc jobs. If a machine
has an uneven allocation of jobs, we call the slots with more jobs heavy, and the slots with less
jobs light. If all of the slots of the machine have an identical number of jobs assigned to them,
we call all the slots light. When we allocate a job to a machine, we add it to one of the light
slots, arbitrarily. The normalized slot load vector S̄ is S sorted in non-increasing order (slots
of the same machine may be separated in S̄). We add a subscript t to these vectors, i.e., Lt,
L̄t, St and S̄t to indicate the vector after the allocation of the t-th job.

Definition A.1 (Majorization, �). We say that a vector P = (p1, . . . , pa) majorizes vector
Q = (q1, . . . , qb) (denoted P�Q) if and only if for all 1 ≤ k ≤ min(a, b),

k∑
i=1

p̄i ≥
k∑
i=1

q̄i,

where p̄i and q̄i are the i-th entries of the normalized vectors P̄ and Q̄.

For n ∈ N, let [n] denote {1, . . . , n}.

19



Definition A.2 (System Majorization). Let A and B be two processes allocating n jobs to
machines with total capacity C. Let τ = (τ1 . . . τ2n), τi ∈ [C] be a vector representing the (slot)
choices of the n jobs (τ2i−1 and τ2i are the choices of the i-th job). Let SA(τ) and SB(τ) be the
slot load vectors using A and B respectively with the random choices specified by τ . Then we
say

1. A majorizes B (denoted by the overloaded notation A�B) if there is a bijection f : [C]2n →
[C]2n such that for all possible random choices τ ∈ [C]2n,we have

LA(τ)�LB(f(τ)).

2. The maximum load of A majorizes the maximum load of B (denoted by A�nB) if there is
a bijection f : [C]2n → [C]2n such that for all possible random choices τ ∈ [C]2n, it holds
that

`A1 (τ) ≥ `B1 (f(τ)),

where `A1 (τ) and `B1 (f(τ)) are the loads of the most loaded bins in A and B respectively
with the random choices specified by τ and f(τ) respectively.

It is immediate that the following holds.

Observation A.3. A�B ⇒ A�nB.

We now turn to the proof of Lemma 5.19.
First, notice that if we have an system of m identical machines, each of capacity 1, both the

unmodified Greedy algorithm and the allocation algorithm ARLMS will behave in exactly the
same way - the load and the bloadc are the same if the capacity is 1. From [5], we know that
the maximal load on any machine when allocating n = m jobs (to m machines with capacity
1) with the Greedy algorithm, is Θ(log log n). Therefore, the maximal load when allocating
n = m jobs with ARLMS is also Θ(log log n) in this setting. We would like to show that the
maximal load of a system with non-uniform machines of total capacity C is majorized by the
maximal load of a system with C machines of capacity 1, when the allocating algorithm is
ARLMS . We will show that the first system majorizes the second, and deduce the required
result from Observation A.3.

We restate Claim 2.4 of [44]:

Claim A.4 ([44]). Let P and Q be two normalized integer vectors such that P�Q. If i ≤ j
then P + ei�Q+ ej where ei is the i-th unit vector and P + ei and Q+ ej are normalized.

Lemma A.5. For allocation algorithm ARLMS, let A be a system with non-uniform machines
of total capacity C, and B be a system with C uniform machines of capacity 1 each. Then
B�A.

Proof. We use the slot load vectors of systems A and B (in B the load vector and slot load
vector are identical), and show that SB(f(τ))�SA(τ). The bijection is such that the jobs in
both processes choose the same k1 < k2 ∈ {1, . . . , C} in the normalized slot load vectors, and
the choice corresponds to machines k1, k2 in B and the machines associated with those specific
slots in system A. We use induction: for t = 0, the claim is trivially true.

From the inductive hypothesis, before the allocation of the t-th job, SBt−1(f(τ))�SAt−1(τ).
In system B, the t-th job goes to machine k2. In system A, if the bloadc of the machine of k1
is greater than that of the machine of k2, the job goes to k2 if k2 is a light slot, or to a slot to
the right of k2 (a lighter slot of the same machine), if k2 is a heavy slot. If the bloadsc of the
machines of k1 and k2 are the same, again, the job goes to k2 if k2 is a light slot, or to a slot
to the right of k2 (again, a lighter slot of the same machine), if k2 is a heavy slot. In all cases,
by Claim A.4, it follows that SB(f(τ))�SA(τ).
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scheduling unrelated parallel machines. In Proc. 28th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 217–224, 1987. 5.1

[23] Enyue Lu and S. Q. Zheng. A parallel iterative improvement stable matching algorithm.
In HiPC, pages 55–65, 2003. 1, 3.1

[24] Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online al-
gorithms to local computation algorithms. In Proc. 39th International Colloquium on
Automata, Languages and Programming (ICALP), pages 653–664, 2012. 1.1, 5.2, 5.3

[25] Yishay Mansour and Shai Vardi. A local computation approximation scheme to maximum
matching. In APPROX-RANDOM, pages 260–273, 2013. 1.1

[26] Michael Maschler, Eilon Solan, and Shmuel Zamir. Game Theory. Cambridge Press, 2013.
3.1

[27] Roger B. Myerson. Optimal auction desing. Mathematics of Operations Research, 6:58–74,
1981. 5.2, 5.2

[28] Cheng Ng and Daniel S. Hirschberg. Lower bounds for the stable marriage problem and
its variants. SIAM J. Comput., 19(1):71–77, 1990. 3.1

[29] Huy N. Nguyen and Krzystof Onak. Constant-time approximation algorithms via local im-
provements. In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 327–336, 2008. 1.1

[30] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, editors. Algorithmic Game Theory.
Cambridge University Press, 2005. 2.2

[31] Noam Nisan and Amir Ronen. Algorithmic mechanism design (extended abstract). In
Proc. 31st Annual ACM Symposium on the Theory of Computing (STOC), pages 129–140,
1999. 5.1

[32] Rafail Ostrovsky and Will Rosenbaum. On the communication complexity of finding an
(approximate) stable marriage. CoRR, abs/1406.1273, 2014. 3.1

[33] Michael J. Quinn. A note on two parallel algorithms to solve the stable marriage ppoblem.
BIT Numerical Mathematics, 25(3):473–476, 1985. 3.1

22



[34] Omer Reingold and Shai Vardi. New techniques and tighter bounds for local computation
algorithms, 2015. Under submission. 1.1, 5.2, 5.3

[35] Alvin E. Roth. The origins, history, and design of the resident match. Journal of the
American Medical Association, 289(7):909–912, 2003. 3.1

[36] Alvin E. Roth and Elliott Peranson. The redesign of the matching market for american
physicians: Some engineering aspects of economic design. American Economic Review,
89:748–780, 1999. 3.1

[37] Alvin E. Roth and Uriel G. Rothblum. Truncation strategies in matching markets – in
search of advice for participants. Econometrica, 67(1):21–43, 1999. 3.1

[38] Alvin E. Roth and Marilda Sotomayor. Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis. Cambridge University Press, 1990. 3.1

[39] Alvin E. Roth and Xiaolin Xing. Turnaround time and bottlenecks in market clearing: De-
centralized matching in the market for clinical psychologists. Journal of Politial Economy,
105:284–329, 1997. 3.1

[40] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
In Proc. 2nd Symposium on Innovations in Computer Science (ICS), pages 223–238, 2011.
1, 1.1, 2.1

[41] Kunal Talwar and Udi Wieder. Balanced allocations: the weighted case. In Proc. 39th
Annual ACM Symposium on the Theory of Computing (STOC), pages 256–265, 2007. 5.1

[42] S. S. Tseng and Richard C. T. Lee. A parallel algorithm to solve the stable marriage
problem. BIT, 24(3):308–316, 1984. 3.1
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