
Sublinear graph augmentation for fast query

implementation

Artur Czumaj∗ Yishay Mansour† Shai Vardi‡

April 23, 2017

Abstract

We introduce the problem of augmenting graphs with sublinear memory in order
to speed up replies to queries. As a concrete example, we focus on the following
problem: the input is an (unpartitioned) bipartite graph G = (V,E). Given a query
v ∈ V , the algorithm’s goal is to output v’s color in some legal 2-coloring of G, using
few probes to the graph. All replies have to be consistent with the same 2-coloring.

We show that for graphs with good mixing time, there exists a randomized al-
gorithm that replies to queries using Õ(

√
n) probes and no additional memory. In

contrast, we show that any deterministic algorithm for such graphs that uses no mem-
ory augmentation requires a linear number of probes. We give an algorithm for grids
and tori that uses a sublinear number of probes and no memory. On the negative
side, we show that even with unbounded preprocessing, a natural family of algo-
rithms, probe-first local computation algorithms, requires Ω(n/α) probes if the graph
is augmented with α words of memory. Last, we give an algorithm for trees that errs
on a sublinear number of edges (i.e., a sublinear number of edges are monochromatic
under this coloring) that uses sublinear preprocessing, memory and probes.

1 Introduction

Consider a scenario in which we would like to implement query access to parts of a
solution to a combinatorial problem on some huge graph G. For example, for the maxi-
mal/maximum matching problem, we would like to be able to query every vertex for an
incident edge (if any) that belongs to an optimal (or approximately optimal) solution. In
the classical model of algorithmic analysis, this task can be solved using global compu-
tations, by running an algorithm that takes as its input the entire graph, performs some
computations, and returns the output; for massive graphs such an approach is not feasible
- just reading the entire input may be too costly. In this paper, we take another approach,
which is natural in the setting of large graphs. We consider a scenario when we have probe
access to G and some additional, strictly limited amount of memory at our disposal. A
probe1 specifies a vertex v and a port number i, and the reply to the probe is v’s ith

neighbor (for simplicity, we assume that the reply also includes the neighbor’s degree).
To measure the quality of performance of our algorithms, we consider four parameters
in this work: the number of probes made to the graph (which also serves as a proxy for

∗University of Warwick, UK. E-mail: a.czumaj@warwick.ac.uk.
†Tel Aviv University, Tel Aviv, Israel. E-mail: mansour@tau.ac.il.
‡California Institute of Technology, Pasadena, CA, USA. E-mail: svardi@caltech.edu.
1Feige et al., [7], differentiate between strong and weak probes. Our definition of probe is consistent

with their definition of weak probe, which is also the definition of Goldreich and Ron [12].

1

runtime), the size of additional memory, the preprocessing time and the quality of the
solution. Specifically, we consider the trade-offs between them.

To make this more precise, we focus on a concrete problem: 2-coloring of a bipartite
graph. Given a graph G = (V,E), and a coloring of the vertices c : V → {red, blue}, we
say an edge (u, v) ∈ E is monochromatic if c(u) = c(v). A coloring c is ε-almost legal if
at most ε|E| edges are monochromatic.

Given an uncolored graph G = (V,E) that is known to be bipartite, we would like
to design an algorithm A that has probe access to the graph, takes queries of the form
v ∈ V and outputs a color c(v) ∈ {red, blue} such that the following hold:

1. {c(v) : v ∈ V } is an ε-almost legal coloring of G;

2. A uses at most k probes per query;

3. A uses at most α bits of (auxiliary) memory;

4. A uses no preprocessing (that is, A is not allowed to probe the graph until the first
query).

Naturally, we would like ε, k and α to be as small as possible. If ε = 0, we say that the
algorithm is exact.

To see the difficulty of this scenario, first consider the case that we want ε = 0, and G
is an adversarial n-vertex cycle, with vertex IDs taking the values {1, 2, . . . , n}. Assume
the reply to the first queried vertex is red, and the next queried vertex is “on the other
side” of the cycle. We can clearly not hope to give the correct color with o(n) probes per
query, regardless of how much memory we have. This example shows the main challenge
in designing good algorithms in our setting: how to coordinate local computations to
establish global properties of the inout graph, to maintain consistent local information.
We prove a more general impossibility result (Theorem 1.5).

The problem considered naturally falls in the framework of local computation algo-
rithms (LCAs), as studied by Rubinfeld et al. [28] (see Section 2 for a formal definition).
This work differs from previous work on LCAs, e.g., [6, 15, 19, 21], in that we allow the
LCA to modify the memory over its execution. In previous works the auxiliary memory
was used exclusively to store a random seed that is needed for consistency in randomized
LCAs, e.g., [7, 22,27].

1.1 Our Contributions

For simplicity, in all of our results, the amount of memory is a hard constraint; the bound
on the number of probes is satisfied with arbitrarily high probability. It is easy to adapt
the (positive) results so that the converse is true (and hence also that both are satisfied
w.h.p.) Intuitively, the difficulty of the problem arises from the fact that no preprocessing
is allowed. If a linear amount of preprocessing is allowed, we can simply use BFS to color
the graph, and then store some “central” vertices along with their color. We show that
this can be implemented by selecting a random subset of the vertices to be central nodes.
Then a simple BFS from each queried vertex is guaranteed to quickly find a central node
w.h.p.

Theorem 1.1. For any α > 0, and any connected bipartite graph G = (V,E), there exists
an exact 2-coloring algorithm for G that uses O(|E| + |V |) preprocessing time, α log |V |
words of memory and performs O

(
|V |
α

)
probes w.h.p.

2

In Appendix A, we extend Theorem 1.1 to arbitrary (not necessarily connected)
graphs.

If the input is large, however, even linear preprocessing may be infeasible. Our main
focus in this paper is therefore the case when little to no preprocessing is allowed. We
first consider what can be done using no memory. We give algorithms for graphs that
have good mixing time and for grids (note that grids are poorly mixing) that require no
preprocessing and no memory. The high level of both is the same: given the queried
vertex, we find a path from it so some predetermined vertex (in our case, we choose
the vertex with ID 0), whose color is set to be red. If the path between q and 0 is of
even length, we color q red, otherwise we color it blue. On graphs with fast mixing time
graphs, we perform two random walks, one from q and one from 1, until they intersect. On
grids, we show how to efficiently construct a hyperplane containing q and 1-dimensional
paths from vertex 0; we use their intersection to find the path. The results on grids
immediately apply to tori as well. For graphs that have good expansion, we give a lower
bound of Ω(n) probes for deterministic algorithms to complement the upper bound of
Õ(
√
n) (where n is the number of vertices), showing that randomization is necessary to

obtain algorithms with small probe complexity for this problem on graphs with good
expansion (we use Õ to hide logarithmic dependencies, for clarity of presentation). The
graphs with good expansion that we use to prove the lower bound are complete bipartite
graphs. Note that complete bipartite graphs are excellent expanders.

Theorem 1.2. There exists a randomized exact 2-coloring algorithm for bipartite graphs
with mixing time τ = O(log n) that use no preprocessing, no memory and O (

√
n log n)

probes.

Theorem 1.3. There does not exist a deterministic algorithm for exact bipartite 2-
coloring complete bipartite graphs that uses no memory and fewer than n

4 probes.

Theorem 1.4. There exists a deterministic exact 2-coloring algorithm for r-dimensional

grids with no preprocessing and no memory that performs O
(
rn(r−1

r)
)

probes.

Theorem 1.3 holds for algorithms for complete bipartite graphs that use no auxiliary
memory. We give a more general lower bound for a natural family of deterministic al-
gorithms: deterministic probe-first LCAs. Probe-first LCAs are ones whose probes are
independent of the memory: the LCA first performs its probes and only then consults
the memory. While the memory may provide useful information, it doesn’t provide any
encoding of the graph itself. All of the LCAs in this paper can be thought of as probe-first
LCAs, and indeed, we are not aware of any deterministic LCA in the literature that is not
(and can not be formulated as one). The randomized LCAs in the literature only read
the memory to obtain the random seed, and so are not technically probe-first LCAs. We
remark upon this further in Section 2. In Section 6, we show that if a probe-first LCA is
allowed access to α bits of memory (where α is possibly a function of n), then it requires
Ω(n/α) probes to find an exact 2-coloring.

Theorem 1.5. For any α > 0, k ≥ 0, and n ≥ (k+ 2)α+ 2, there does not exist a deter-
ministic probe-first LCA for exact bipartite 2-coloring even-length cycles of length n that
uses at most k probes and less than α bits of memory, even with unbounded preprocessing.

An interesting open problem is whether this lower bound extends to arbitrary LCAs.
Our results for grids and graphs with good expansion implicitly use the fact that these

graphs have (relatively) small diameter. What if the diameter is unbounded? For the
special family of trees, we show the following.

3

Theorem 1.6. For any α > 0, there exists a bipartite 2-coloring LCA for trees with O(α)
preprocessing and O(α) memory that performs O(n logn

α) probes with probability 1− 1
poly(n)

with at most α− 1 violated edges.

We summarize these results in Table 1.

Graph type Preproc. Memory Probes Failure Edges

Time (words) Probability2 Violated

General O(m+ n) O(
√
n log n) O(

√
n) 1/ poly (n) 0

Cycle (det. pf.) any α Ω (n/α) 0 0

Expander 0 0 Õ(
√
n) 1/ poly (n) 0

Expander (det.) 0 0 Ω(n) 0 0

r-dim Grid 0 0 O
(
rn(r−1

r)
)

0 0

Tree O(α) O(α) Õ(n/α) 1/ poly (n) α− 1

Table 1: Summary of results - n is the number of vertices; m is the number of edges in
the input graph. “det.” means the bound holds for deterministic algorithms. “det. pf.”
means the bound holds for deterministic probe-first algorithms.

1.2 Related Work

If preprocessing is allowed, our model is similar in spirit to graph sparsifiers e.g., [4,10,30],
in particular graph spanners, e.g., [3, 8, 25]: given a connected, edge-weighted graph G =
(V,E), a spanner is a sparse subgraph H of G that approximately preserves all pairwise
distances. A spanner can be thought of as adding some auxiliary information to the graph:
which edges of G are in H. This additional information allows for saving in query reply
time. Spanners are useful in routing [26, 32], by allowing for small routing tables, and in
distance oracles [5,31,33]. For example, Chechik [5] shows that it is possible to augment
a graph with O(kn1+1/k) bits of memory, such that it is possible to reply to queries of
the form “what is the distance between u and v?” in time O(1), where the reply is a
2k − 1 approximation to the real distance. The two main conceptual differences between
this work and the previous work on spanners are (1) we are interested in performing
only sublinear or even no preprocessing (all of the above works use preprocessing that
is polynomial in the input size), and (2) we wish to augment the graph with sublinear
memory.

Rubinfeld et al. [28] formally introduced the LCA model, though several well studied
models fit within the framework. For example, local reconstruction [1, 29]: given access
to a function g that is close to having a certain property (e.g., monotonicity) the goal is
to reply to a query x with some value f(x) such that f is close to g, using few probes
to g. Locally decodable codes e.g., [16, 34] allow the decoding of part of a code without
decrypting it in its entirety. In the past few years, many papers have studied LCAs for
maximal independent set (e.g., [2, 11]), maximal and approximate maximum matching
(e.g., [19,23]) and coloring (e.g., [6,9]). Most of the work has been on graphs of bounded
degree graphs; recently Feige et al. [7] considered LCAs on graphs of unbounded degree,
employing sparsification techniques to obtain LCAs for weak coloring and approximate
maximum matching. London et al. [20] showed how to apply LCAs to convex optimization
to obtain distributed algorithms for e.g., network utility maximization, that are robust

4

to link failures. Levi et al., [18] describe LCAs that reply to queries of the form “is this
edge in a sparse spanner of G?”

Göös et al. [14] show that for certain problems, remote probes do not help. A remote
probe is a probe to a vertex ID that was neither given as the query nor received as a reply
to a probe. In this work, we give the first non-trivial3 LCAs that make use of remote
probes. The result of [14] applies to LCL (locally checkable labeling) problems [24] on
bounded degree graphs when the number of probes is o(

√
log n). 2-coloring is also an LCL

problem, but the number of probes our algorithm uses is greater than their threshold,
hence the results do not contradict. We conjecture that there is no LCA for exact 2-
coloring bipartite graphs that uses Õ(

√
n) probes, and uses neither remote probes nor

any additional memory.
A large body of work in the property testing literature has been devoted to testing

bipartiteness e.g., [12,13,17]. Property testing differs conceptually from this line of work
in that we are guaranteed that the input is bipartite. Testing for bipartiteness usually
involves sampling a subgraph and coloring it [12,17]; it is not clear whether it is possible
to adapt these testers to LCAs, while ensuring the consistency of the coloring. It is
interesting to extend the results of the paper to graphs that are only guaranteed to be
“almost” bipartite.

2 Preliminaries

We denote the set of integers {0, 1, 2, . . . , n − 1} by [n]. Logarithms are natural. Our
input is a simple undirected bipartite graph G = (V,E), in which every vertex has an ID
and all IDs are distinct, |V | = n; each vertex is assigned a unique ID in {0, 1, 2, . . . , n−1}.
The neighborhood of a vertex v, denoted N(v), is the set of vertices that share an edge
with v: N(v) = {u : (u, v) ∈ E}. The degree of a vertex v is denoted dv = |N(v)|.

We think of each vertex v as having dv ports, 1, 2, . . . , dv, where dv is v’s degree. Each
of v’s neighbors is connected to v via a single unique port. There are two probe models
for LCAs: strong and weak. A strong probe is given a vertex ID and returns a list of the
vertex’s neighbors. A weak probe is given a vertex ID v and a port number i and returns
v’s ith neighbor u, and u’s degree. In this paper (with the exception of Appendix A), we
focus on weak probes.

2.1 LCAs.

Our definition of LCAs is slightly different from earlier definitions considered in the lit-
erature. The main differences are the following:

1. We allow the LCA to write on the auxiliary memory. Although not explicitly disal-
lowed in most previous work, the enduring memory has thus-far (e.g., [2, 19, 22, 23,
27]) only been used for storing a random seed.

2. The randomness we use is not identical between queries. In previous work, random-
ized LCAs fixed their randomness before the first query; thereafter, they behaved
deterministically: if the same query was given several times, the LCA would perform
exactly the same steps. In this work, we allow LCAs to perform different actions
if the same query is given (under the condition that the reply to the query is the

3For example, a trivial problem is the following: if vertex number 1 has an even degree, color all vertices
blue, otherwise color all vertices red.

5

same). For this reason, our failure probability is per probe and not over all possible
queries.

Definition 2.1 (Local computation algorithm). A p(n)-probe m(n)-memory local com-
putation algorithm A for a computational problem is an algorithm that receives an input
of size n. Given a query x, A makes at most p(n) probes to the input in order to reply.
A is allocated a memory of m(n) bits in addition to the memory required to reply to each
query. A must be consistent; that is, the algorithm’s replies to all possible queries must
combine into a single feasible solution to the problem.

If the LCA is randomized, it also has a failure probability δ(n), which is the probability
per query that A uses more than p(n) probes.

We note that we define randomized LCAs as Las Vegas LCAs.4 One can easily trans-
form a Las Vegas LCA to a Monte Carlo LCA by letting the LCA return “fail” or an
arbitrary output whenever the allowed number of probes is exceeded.

Definition 2.2 (Probe-first LCAs). Probe-first LCAs are LCAs whose choice of probes
is not a function of the memory. In other words, the LCA first performs the probes and
only then accesses the memory.

All of the LCAs of this paper are either probe-first LCAs or they are Las Vegas LCAs
and their Monte Carlo variants can be viewed as probe-first LCAs.

2.2 Breadth First Search

Several of the LCAs herein use Breadth-First Search (BFS). During its execution, the BFS
algorithm maintains a data structure that contains so called “gray” vertices - vertices that
have been encountered, but whose neighbors have not yet been probed. At any time, the
vertices in the data structure are all at distance i or i + 1 from the root of the BFS
tree, for some i. In the generic BFS description, when it “pops” a new vertex from the
data structure, it arbitrarily chooses one of the vertices at distance i. For consistency, we
always break ties by ID; that is, our BFS always chooses the vertex at distance i with the
lowest ID. The tie breaking with respect to the ports is done similarly: lower ID ports
are chosen first.

3 Connected General Graphs with Preprocessing

Given linear preprocessing, there is an LCA for 2-coloring arbitrary (connected) bipartite
graphs that uses k probes α and bits of memory such that kα = Õ(n).

Theorem 1.1. For any α > 0, and any connected bipartite graph G = (V,E), there exists
an exact 2-coloring LCA for G that uses O(|E|+ |V |) preprocessing time, α log |V | words

of memory and performs O
(
|V |
α

)
probes w.h.p.

Proof. Let G = (V,E) be a connected bipartite graph. In the preprocessing stage, (arbi-
trarily) 2-color G. Uniformly at random, choose a set S ⊂ V of α log n vertices, and save
their ID and color to memory.

For any queried vertex v, perform BFS until some vertex s ∈ S is encountered; v is
colored according to the parity of a path between v and s. After k probes, the probability
that no vertex s ∈ S is encountered is

4Las Vegas algorithms always return a correct answer; Monte Carlo algorithms always obey their
allotted runtime.

6

k−1∏
i=0

(
1− α log n

n− i

)
≤
(

1− α log n

n

)k
.

Setting k = O(nα) gives that this probability is at most e−Ω(logn).

In Appendix A, we extend Theorem 1.1 to arbitrary (not necessarily connected)
graphs.

4 Graphs with fast mixing time

In this section, we consider regular bipartite graphs whose mixing time is logarithmic in
the number of vertices. More formally, let G = (V,E) be a connected bipartite graph
with maximal degree ∆, we define a Markov chain for a random walk on G as follows: for
every vertex v, move to each of v’s neighbors w.p. 1

2∆ , and stay at v w.p. 1−
∑dv

i=1
1

2∆ .
This chain is clearly aperiodic (every vertex has a self-loop) and irreducible, and as its
transition matrix is symmetric, its stationary distribution is the uniform distribution, i.e.,
∀v ∈ V : π(v) = 1

n .
With regard to the mixing time, we require the following: Starting from any vertex,

following a random walk of length τ = Θ(log n), the probability that we are at any vertex
u is approximately 1/n. For concreteness, we require that the probability that we are at
vertex u is at least 1

n −
1
n2 . We call τ the mixing time. We note that such graphs are

ubiquitous, e.g., a complete bipartite graph with self loops of constant probability has
constant mixing time. Our main positive result of this section is the following:

Theorem 1.2. There exists a randomized exact 2-coloring LCA for bipartite graphs with
mixing time τ = O(log n) that uses no preprocessing, no memory and O (

√
n log n) probes.

Proof. Our LCA is the following: given a vertex q as a query, perform a random walk
of length τ

√
n from vertex with ID 0. Store the vertex IDs of the vertices that were

encountered on this random walk; call this set S. Now perform a random walk from q
until one of the vertices of S is encountered. This creates (at least one) path p between
vertices 1 and q. If p is of odd length, return blue, otherwise return red.

This clearly returns a valid coloring. It remains to show that O(
√
n log n) probes are

used w.h.p. This is shown in Lemma 4.1, completing the proof.

Lemma 4.1. Let S be the set of vertices encountered in the first random walk. The
probability that none of these vertices is encountered in the second random walk after
4τ log n steps is at most 1/n2.

Proof. Consider the vertices at intervals of τ steps from one another in the first random
walk. Denote this set by T ⊂ S. We choose the constant c1 so that |T | ≥

√
n w.h.p.

We bound the probability that none of the vertices from the second walk are in T . For

each vertex u ∈ S, Pr[u /∈ T] ≤
(
n−1
n + 1

n2

)√n
. Let X denote the event that none of the

vertices from the second walk are in T . By the union bound

Pr[X] ≤
(

1− 1

n
+

1

n2

)4n logn

≤
(

1− 1

2n

)4n logn

≤ e2 logn.

7

We complement the upper bound with a lower bound on deterministic algorithms,
showing that randomness is indeed necessary for obtaining a sublinear probe complexity
if no auxiliary memory is used.

Theorem 1.3. There does not exist a deterministic LCA for exact 2-coloring complete
bipartite graphs that uses no memory and fewer than n

4 probes.

Proof. Consider any LCA A on the vertex set [n] that uses at most k = n
4 − 1 probes.

Assume w.l.o.g. that A uses exactly k probes. It is easy to construct a subgraph G′

such that given a query vertex 1, A will probe the vertices 2, 3, . . . , n/4. Similarly, it is
easy to construct a subgraph G′′ that guarantees that when A is given as a query vertex
n/4 + 1, it probes vertices n/4 + 2, . . . , n/2. As each of these subgraphs contains exactly
n/4 vertices, and each side of an n vertex bipartite graph consists of n/2 vertices, it is
possible to generate two complete bipartite graphs G1, G2, each of which have both G′

and G′′ as subgraphs, but so that in G1, vertices 1 and n/4 + 1 are on the same side, and
in G2 they are on different sides. Clearly there is no coloring of the vertices 1 and n/4 + 1
that satisfies both G1 and G2.

5 Grids and Tori

We describe the results for grids, noting that they hold for tori as well. Designing algo-
rithms for a tori is intuitively at least as hard as for grids, as there is no notion of an end,
and hence no absolute position, which could hypothetically be leveraged by algorithms
for grids.

5.1 Warm up - 2-dimensional grids

We assume that a
√
n×
√
n grid is arranged so that each interior vertex has four neighbors

- to the north, south, east and west. However, the vertices do not know which neighbor is
in which direction. When we say that it is possible to land on a vertex we mean to reach
it and “know that we are there” (to distinguish from the usual notion of reachability).

Lemma 5.1. Given an edge (v, u), assume w.l.o.g. that u is to the north of v. It is
possible to land on the vertex north of u using at most 39 weak probes.

Proof. Vertex u has three neighbors. Not counting paths through u, two of u’s neighbors
are at distance 2 from v, and the third, w is to the north of u. There is no path of length
2 from w to v that does not pass through u. It takes it most 12 probes to find all vertices
at distance 2 from any vertex x - three probes to find each of x’s neighbors and 3 more per
neighbor. Therefore 12 probes per vertex are sufficient to rule out two of u’s neighbors
as the northern neighbor. Adding the 3 probes made by u completes the claim.

It is also possible to land on the vertex south of v using the same reasoning. It is easy
to know when we reach the edge of the grid, as the edge vertices have one fewer neighbor;
the following is immediate

Corollary 5.2. It is possible to traverse the graph in a straight line from side to side
through any vertex using 39

√
n probes.

It is not possible to know in which direction the graph is being traversed (north-south
or east-west), however it is not necessary.

8

Theorem 5.3. There exists a deterministic bipartite 2-coloring LCA for 2-dimensional
grids with no preprocessing and no memory that performs O (

√
n) probes.

Proof. When queried on a vertex v, traverse the graph in both directions (north-south
and east-west). Traverse the graph in one direction from the vertex with ID 0 (it will be
either north-south or east-west). The line described by the traversal from vertex 1 must
intersect exactly one of the lines emanating from v (unless v’s ID is 0, in which case it
intersects both). Coloring vertex 0 red determines v’s color.

5.2 k-dimensional grids

Each interior vertex of a k-dimensional grid is connected to 2k other vertices. The LCA
is the following: When a vertex v is queried, the LCA discovers all vertices of some
hyperplane passing through it; the LCA then traverses the grid along the k straight lines
that pass through the vertex with ID 0. The hyperplane intersects with at least one of
these lines; coloring vertex 0 red determines v’s color.

Lemma 5.4. Let G = (V,E) be a k-dimensional grid, k ≥ 1 and let u and v be two
interior vertices such that (u, v) ∈ E. Then there exists a single w ∈ N(u) \ {v} such that
there does not exist a path of length 2 from w to v that does not include u.

Proof. Denote W = N(u) \ {v}. There exists one vertex w ∈ W for which u, v, w lie on
a line. The shortest path between v and w that does not include u must have length 4.
For all other w′ ∈W , u, v, w define a two dimensional plane, and there is a vertex x such
that v, u, w, x comprise a square. The path w, x, v has length 2.

Lemma 5.5. Given an edge (v, u), assume w.l.o.g. that u is to the north of v. It is
possible to land on the vertex north of u using at most (2k− 1)3 + (2k− 1)2 + 2k− 1 weak
probes.

Proof. Vertex u has 2k − 1 neighbors that are not v. By Observation 5.4, all but one of
them has a path of length 2 to v that doesn’t pass through u. For each of the neighbors
of u, it is possible to enumerate all length 2 paths using (2k − 1)2 + 2k − 1 probes.

Note that it is also possible to land on the vertex to the south of v using the same
reasoning, therefore:

Corollary 5.6. It is possible to traverse the k-dimensional grid in a straight line from
side to side through any vertex using O

(
k3 k
√
n
)

probes.

Note that even though we can traverse the grid, we cannot know the absolute direction
of the line. We show how to build on the line construction to construct a hyperplane.

Lemma 5.7. Given a k-dimensional grid G = (V,E) and a vertex v ∈ V , it is possible

to construct a hyperplane that passes through v using at most O
(
k3n

1
k

)
+ O

(
kn(k−1

k)
)

weak probes.

Proof. Construct k − 1 lines passing through v that traverse the grid, p1, . . . pk−1. This
takes O

(
k3 k
√
n
)

probes. We can complete these lines to a hyperplane as follows: Set

S =
⋃k−1
i=1 pi. As long as there exist two vertices u, v ∈ S, such that N(v) ∩ N(u) 6= ∅,

add the vertex w ∈ N(v) ∩N(u) (there is exactly one such neighbor) to S. This takes at
most k probes per vertex in the hyperplane times.

9

We need to show that (1) all vertices of the hyperplane are added to S, and (2) no
vertices that are not in the hyperplane are added to S. To show (1), assume that some
vertices in the hyperplane are not added to S. Consider the distances from v in the metric
space defined by the grid. Let v be the “origin”, let x be the closest vertex to v (there
may be more than one) that is not in S. But then there are two neighbors of x in the
plane that contains v and x that are closer to v and are in S (as x is the closest vertex
not in S) hence x is too. To show (2), note that any vertex not in the hyperplane has at
most one neighbor in the hyperplane at distance 1.

Theorem 1.4. There exists a deterministic 2-coloring LCA for k-dimensional grids with

no preprocessing and no memory that performs O
(
kn(k−1

k)
)

probes.

Proof. If v’s ID is 0, color v red. Otherwise, construct a hyperplane through v, and k
lines that traverse the grid that pass through vertex 1. The hyperplane must intersect
exactly one of these lines. Color 0 red, and color v accordingly.

6 Lower Bound for Probe-First Graphs

Our main result in this section is the following:

Theorem 1.5. For any α > 0, k ≥ 0, and n ≥ (k + 2)α + 2, there does not exist a
deterministic probe-first LCA for exact 2-coloring even cycles of length n that uses at
most k probes and less than α bits of memory, even with unbounded preprocessing.

6.1 Summary of Proof

The high level of the proof is the following: assume that there exists an LCA that uses
k probes and α − 1 bits of memory and can correctly color all vertices of an n vertex
graph. We build a family of 2α graphs for which the LCA makes the same k probes
when queried on the vertices 1, . . . , α. We use these graphs to encode strings in {0, 1}α.
Specifically, let {s1, . . . , s2α} denote the set of all strings {0, 1}α. We construct 2α graphs
Gs1 , . . . , Gs2α such that for all i ∈ [α], the color of vertex i in Gsj is blue iff sj(i) = 1.
Alice is then given a graph, corresponding to a string s, and sends α− 1 bits to Bob. By
the assumption that the LCA can color the vertices 1, . . . , α correctly, we get that Bob
can recover s. This is true as Bob already knows the replies to all of the probes the LCA
would make, and only needs the α− 1 bits to decide the colors of 1, . . . , α. But if this is
true, we have just given a protocol for encoding α bits of information using α − 1 bits,
which is information-theoretically impossible. Hence no such LCA can exist.

Before going into more detail, we need a more precise description of LCAs.

6.2 A Concise Description of LCAs.

Assume that we have a deterministic probe-first LCA A that uses k probes and α bits
of memory (which we sometimes call a key). We view the LCA is a set of functions
f0
v , . . . , f

k−1
v , v ∈ [V] that map sets of IDs (a history of replies to previous probes) to an

ID and a port number:
f iv : V i → V ×∆,

where ∆ is the maximum degree of the graph. The LCA includes one more set of functions
that map the key and the history of replies to all k probes to a color:

fkv : 2α × V k → {red, blue}.

10

As an example, the following is an excerpt of a possible set of probe functions for the
query 1 (i.e., the vertex with ID 1), in a 3-probe LCA A that uses two bits of memory
for cycles on the vertex set [9]. For clarity, instead of denoting the port numbers by the
set {0, 1}, we denote them by {clockwise, anticlockwise}.

f0
1 = [1, anticlockwise],

f1
1 (2) = [1, clockwise], f1

1 (3) = [3, anticlockwise],

f2
1 (2, 3) = [3, clockwise],

f3
1 ({1, 1}, (2, 3, 9)) = red, f3

1 ({1, 0}, (2, 3, 1)) = red

This can be interpreted as follows: When the LCA receives 1 as a query, it probes ver-
tex 1’s anticlockwise neighbor. If it receives as a reply that 1’s anticlockwise neighbor is 2,
it probes vertex 1’s clockwise neighbor next. If it receives as a reply that 1’s anticlockwise
neighbor is 3, it probes 3’s anticlockwise neighbor next. f2

1 (2, 3) = [3, clockwise] means
that given that the replies to the previous two queries were 2 and 3, we next probe vertex
3’s clockwise neighbor. Note that f3

1 (2, 3, 1), while syntactically correct, is impossible for
this particular LCA, as 1 cannot be 3’s clockwise neighbor as it is 2’s clockwise neighbor.
We allow “impossible” histories, to simplify the notation and proof.

This interpretation can be extended in the natural way to general (not probe-first)
LCAs, by having the key as part of the input to all of the functions.

6.3 Proof of Theorem 1.5

Proof. Assume there is a probe-first LCA A for bipartite 2-coloring even cycles on n =
(k+2)α+2 vertices that uses (at most) k probes and α−1 bits of memory. For simplicity,
we assume that k is even; the proof can easily be tweaked to accommodate odd k.

We use A to construct a set of α + 1 line segments as follows. Initialize the roots
of segments I0, . . . , Iα to be vertices 0, 1, . . . , α respectively. We let next be the smallest
positive integer that we have not yet used as a vertex name. Before the first probe,
next = α + 1. We keep track of all the integers we have used as vertex names, labeling
this set Γ. We then simulate A for queries 1, . . . , α. Whenever A probes a vertex v and a
direction dir ∈ {clockwise, anticlockwise} such that v does not have a dir neighbor,
we let next be that neighbor, add next to Γ and update next to be the smallest integer
not in Γ. If A probes a vertex v that we have not seen yet (i.e., is not in Γ), with direction
clockwise (anticlockwise), we let v be the anticlockwise (resp. clockwise) neighbor
of the anticlockwise-est (resp. clockwise-est) vertex in I0. After simulating k probes
for queries 1, . . . , α, we have a set of α+ 1 line segments. Denote this set by I.

Note that given I, A can perform all of the probes when queried on the vertices
1, . . . , α.

If |I| is odd, add to I the next α+ 1 integers in Γ, otherwise add the next α integers
in Γ. We call these vertices auxiliary vertices. Note that |I| is now even.

Lemma 6.1. I contains at most (k + 2)α+ 2 vertices.

Proof. After the initialization of the segments, |Γ| = α+ 1. We perform αk probes, each
one adds at most 1 vertex to Γ, for a total of α+ 1 +kα. Adding the α+ 1 extra vertices,
this gives that I has at most (k + 2)α+ 2 vertices.

Now add to I the next (k + 2)α + 2− |I| integers in Γ, to ensure that I has exactly
(k + 2)α + 2 vertices. We have constructed α + 1 segments I0, I1, . . . , Iα, such that Ii
contains vertex i. These segments can be joined by either

11

1. connecting the clockwise-est vertex in Ii−1 directly to the anticlockwise-est ver-
tex of Ii, or

2. connecting the clockwise-est vertex in Ii−1 and the anticlockwise-est vertex of
Ii to an intermediary vertex

for every i ∈ [α]. The cycle is then completed by connecting the anticlockwise-est
vertex of Iα to the clockwise-est vertex of I1, possibly with some intermediary vertices
(to ensure all graphs have the same number of nodes). The α choices of inserting or not
inserting an intermediary vertex between Ii−1 and Ii, i ∈ [α] describe the 2α possible
graphs that we can construct in this fashion from the α+ 1 intervals.

We show how to construct the graph G(x) that encodes the string x = x1x2 . . . xα.
Note that the graph is a function of A and x. Let clockwisei and anticlockwisei be
the number of vertices clockwise and anticlockwise of vertex i in Ii respectively. Set
x0 = 0. For all i ∈ [α], if anticlockwisei−1 + clockwisei is even and xi−1 6= xi, or
anticlockwisei−1 + clockwisei is odd and xi−1 = xi, add an auxiliary vertex between
Ii−1 and Ii, otherwise connect them directly. Then connect the anticlockwise-est vertex
of Iα to the clockwise-est vertex of I0, inserting the remaining auxiliary vertices between
them, completing the cycle.

This cycle encodes x, because vertex i is an odd number of vertices away from vertex
0 iff xi = 1, hence a 2 coloring of the graph that assigns vertex 0 the color red, will assign
all vertices i s.t. xi = 0 the color red and all vertices i such that xi = 1 the color blue.

Set |I| = n. We have shown a construction of 2α different graphs {G(x) : x ∈ {0, 1}α},
each of length n, for which A performs the same probes, and gets the same replies thereto,
for queried vertices 1, . . . , α, but there are no two graphs G(x) 6= G(y) for which it colors
all the vertices 1, . . . , α identically.

We give the one-way α− 1-bit protocol for encoding an α-bit string x. Alice is given
G(x) and sends an α − 1-bit encoding of G(x) to Bob. Bob knows the replies to the
probes that the LCA A would make when queried on vertices 1, . . . , α. The LCA, having
the replies to the probes can use the key to correctly color all the vertices 1, . . . , α by the
assumption that A is a 2-coloring LCA for even-length cycles of length n. But from this
coloring, it is easy to decode x. Therefore such an LCA implies an encoding protocol for
α bits using α− 1 bits, a contradiction.

7 Trees

In this section, we show that if G is a tree, we can obtain a coloring that has α − 1
violated edges by choosing α vertices uniformly at random and coloring them blue. The
preprocessing and memory required are therefore proportional to α.

Fix α. Choose a set S ⊂ V , |S| = α of focii uniformly at random. Color the vertices
of S blue. Whenever a vertex v is queried, if v /∈ S, perform a BFS. Color v consistently
with the first encountered focus. We use a charging argument to show that at most
α − 1 edges are monochromatic. Define the skeleton of the tree to be the union of the
paths between the focii. For any vertex v in the skeleton, its skeletal subtree is the set of
vertices W not on the skeleton, for which any path connecting w ∈W to any skeleton on
the vertex passes through v. Let T be the tree in which every vertex is given as a query
to the LCA and colored according the the reply.

Lemma 7.1. If v∗ is on the skeleton, and v∗’s focus is u, then u is the focus of every
vertex in v∗’s skeletal subtree.

12

Proof. Let w be some vertex in v’s skeletal subtree. Clearly a focus is closest to v iff it
is closest to w. Furthermore, the BFS tie-breaking rule is global, guaranteeing that the
focus that will be found first (out of all the closest focii) in the BFS from v is the same
one that will be found by BFS from w.

Lemma 7.2. There are at most α− 1 violated edges in T .

Proof. From Claim 7.1, edge violations can only be on the skeleton. Call any vertex of
degree at least 3 (that is not a focus) a junction. We now charge violated edges to leaves.
For some leaf, follow the skeleton until we either reach a violated edge or a junction. If
we reach a junction, we contract the path, so that the focus takes place of the junction.
The focus is not a leaf anymore, and we have reduced the size of the skeleton (this ensures
the process terminates). Otherwise (we reach a violated edge) - we charge the violated
edge e to the focus, and remove the focus, e and the paths between them and from e until
the nearest junction. It remains to show that no edge between e and the junction can be
violated. But this is implied by Claim 7.1 (with the junction as v∗).

Lemma 7.3. The number of probes used to reply to any query is O
(
n logn
α

)
with proba-

bility 1− 1
poly(n) .

The proof is similar to the proof of Theorem 1.1 and is omitted. The algorithm
description together with Lemmas 7.2 and 7.3 imply Theorem 1.6.

References

[1] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Property-preserving data recon-
struction. Algorithmica, 51(2):160–182, 2008. 1.2

[2] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local com-
putation algorithms. In Proc. 22nd ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1132–1139, 2012. 1.2, 1

[3] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On
sparse spanners of weighted graphs. Discrete Comput. Geom., 9(1):81–100, January
1993. 1.2

[4] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2)
time. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, pages 47–55, 1996. 1.2

[5] Shiri Chechik. Approximate distance oracles with constant query time. In Symposium
on Theory of Computing, STOC, pages 654–663, 2014. 1.2

[6] Guy Even, Moti Medina, and Dana Ron. Best of two local models: Local centralized
and local distributed algorithms. CoRR, abs/1402.3796, 2014. 1, 1.2

[7] Uriel Feige, Boaz Patt-Shamir, and Shai Vardi. On the probe complexity of local
computation algorithms. CoRR, abs/1703.07734, 2017. 1, 1, 1.2

[8] Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC, pages 9–17, 2016. 1.2

13

[9] Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In
IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, pages
625–634, 2016. 1.2

[10] Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Pani-
grahi. A general framework for graph sparsification. In Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June
2011, pages 71–80, 2011. 1.2

[11] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, pages 270–277, 2016. 1.2

[12] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded degree
graphs. Combinatorica, 19(3):335–373, 1999. 1, 1.2

[13] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algo-
rithmica, 32(2):302–343, 2002. 1.2

[14] Mika Göös, Juho Hirvonen, Reut Levi, Moti Medina, and Jukka Suomela. Non-
local probes do not help with many graph problems. Distributed Computing - 30th
International Symposium, DISC, pages 201–214, 2016. 1.2

[15] Avinatan Hassidim, Yishay Mansour, and Shai Vardi. Local computation mechanism
design. ACM Trans. Economics and Comput., 4(4):21:1–21:24, 2016. 1

[16] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, pages 80–86, 2000. 1.2

[17] Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipar-
titeness in general graphs. SIAM J. Comput., 33(6):1441–1483, 2004. 1.2

[18] Reut Levi, Dana Ron, and Ronitt Rubinfeld. A local algorithm for constructing
spanners in minor-free graphs. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM, pages 38:1–38:15,
2016. 1.2

[19] Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Brief announcement: Local
computation algorithms for graphs of non-constant degrees. In Proceedings of the
27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA,
pages 59–61, 2015. 1, 1.2, 1

[20] Palma London, Niangjun Chen, Shai Vardi, and Adam Wierman. Distributed
optimization via local computation algorithms. http://users.cms.caltech.edu/

~plondon/loco.pdf, 2017. 1.2

[21] Yishay Mansour, Boaz Patt-Shamir, and Shai Vardi. Constant-time local compu-
tation algorithms. In Approximation and Online Algorithms - 13th International
Workshop, WAOA, pages 110–121, 2015. 1

[22] Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online
algorithms to local computation algorithms. In Proc. 39th International Colloquium
on Automata, Languages and Programming (ICALP), pages 653–664, 2012. 1, 1

14

http://users.cms.caltech.edu/~plondon/loco.pdf
http://users.cms.caltech.edu/~plondon/loco.pdf

[23] Yishay Mansour and Shai Vardi. A local computation approximation scheme to
maximum matching. In APPROX-RANDOM, pages 260–273, 2013. 1.2, 1

[24] Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J.
Comput., 24(6):1259–1277, 1995. 1.2

[25] David Peleg and Alejandro A. Schffer. Graph spanners. Journal of Graph Theory,
13(1):99–116, 1989. 1.2

[26] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing
tables. J. ACM, 36(3):510–530, 1989. 1.2

[27] Omer Reingold and Shai Vardi. New techniques and tighter bounds for local com-
putation algorithms. J. Comput. Syst. Sci., 82(7):1180–1200, 2016. 1, 1

[28] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation
algorithms. In Proc. 2nd Symposium on Innovations in Computer Science (ICS),
pages 223–238, 2011. 1, 1.2

[29] Michael E. Saks and C. Seshadhri. Local monotonicity reconstruction. SIAM J.
Comput., 39(7):2897–2926, 2010. 1.2

[30] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resis-
tances. SIAM J. Comput., 40(6):1913–1926, 2011. 1.2

[31] Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, (STOC), pages 183–192, 2001.
1.2

[32] Mikkel Thorup and Uri Zwick. Compact routing schemes. In SPAA, pages 1–10,
2001. 1.2

[33] Christian Wulff-Nilsen. Approximate distance oracles with improved preprocessing
time. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA, pages 202–208, 2012. 1.2

[34] Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical
Computer Science, 6(3):139–255, 2012. 1.2

A General Graphs with Preprocessing

It is easy to extend the result of Section 3 to graphs that are not necessarily connected.

A.1 Strong Probes

If the LCA uses strong probes, Theorem 1.1 holds without modification (except the omis-
sion of the word “connected”). It is restated here for completeness.

Theorem A.1. For any α > 0, and any bipartite graph G = (V,E), there exists an
exact 2-coloring LCA for G that uses O(|E|+ |V |) preprocessing time, α log |V | words of

memory and performs O
(
|V |
α

)
strong probes w.h.p.

15

Proof outline. Similarly to the proof of Theorem 1.1, arbitrarily 2-color G in the prepro-
cessing stage. Choose a set S ⊂ V of α log n vertices uniformly at random and save their
ID and color to memory.

For any queried vertex v, perform BFS until either some vertex s ∈ S is encountered
or until v’s entire connected component, Cv, is discovered. If the LCA visits a vertex
s ∈ S, v is colored according to the parity of a path between v and s. Otherwise, let the
color of the smallest ID in Cv be blue, and color v accordingly.

Set k = O
(
n
α

)
. If the connected component of v is smaller than k, after k probes, it

will be discovered in its entirety, hence v can be colored. If the connected component has
not been discovered, then by the same argument as in the proof of Theorem 1.1, k probes
will suffice to ensure a vertex of S will be encountered w.h.p.

A.2 Weak Probes

In order to discover k vertices, we might need to perform Ω(k2) weak probes, if the vertices
are well connected (consider for example, a clique).

Theorem A.2. For any α > 0, and any bipartite graph G = (V,E), there exists an
exact 2-coloring LCA for G that uses O(|E|+ |V |) preprocessing time, α log |V | words of

memory and performs O

((
|V |
α

)2
)

weak probes w.h.p.

The proof is virtually identical to that for Theorem A.1 and is omitted.

16

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	LCAs.
	Breadth First Search

	Connected General Graphs with Preprocessing
	Graphs with fast mixing time
	Grids and Tori
	Warm up - 2-dimensional grids
	k-dimensional grids

	Lower Bound for Probe-First Graphs
	Summary of Proof
	A Concise Description of LCAs.
	Proof of Theorem 1.5

	Trees
	General Graphs with Preprocessing
	Strong Probes
	Weak Probes

